Pandas sklearn one-hot encoding dataframe 还是 numpy?
Pandas sklearn one-hot encoding dataframe or numpy?
如何在某些列不需要编码的情况下将 pandas 数据帧转换为 sklearn one-hot-encoded(数据帧/numpy 数组)?
mydf = pd.DataFrame({'Target':[0,1,0,0,1, 1,1],
'GroupFoo':[1,1,2,2,3,1,2],
'GroupBar':[2,1,1,0,3,1,2],
'GroupBar2':[2,1,1,0,3,1,2],
'SomeOtherShouldBeUnaffected':[2,1,1,0,3,1,2]})
columnsToEncode = ['GroupFoo', 'GroupBar']
是一个已经标记编码的数据框,我想只对标记为 columnsToEncode
的列进行编码吗?
我的问题是我不确定 pd.Dataframe
或 numpy
数组表示是否更好以及如何将编码部分与另一个重新合并。
我目前的尝试:
myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(X_train)
df = pd.concat([
df[~columnsToEncode], # select all other / numeric
# select category to one-hot encode
pd.Dataframe(encoder.transform(X_train[columnsToEncode]))#.toarray() # not sure what this is for
], axis=1).reindex_axis(X_train.columns, axis=1)
注意:我知道 / http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html 但在训练/测试拆分中效果不佳,我需要每次折叠都进行这样的编码。
这个库提供了几个分类编码器,使 sklearn / numpy 与 pandas https://github.com/wdm0006/categorical_encoding
但是,他们还不支持"handle unknown category"
现在我将使用
myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(df[columnsToEncode])
pd.concat([df.drop(columnsToEncode, 1),
pd.DataFrame(myEncoder.transform(df[columnsToEncode]))], axis=1).reindex()
因为它支持未知数据集。现在,我会坚持使用 half-pandas half-numpy 因为漂亮的 pandas 标签。对于数字列。
我相信这个对初始答案的更新更好,以便执行虚拟编码
导入日志记录
import pandas as pd
from sklearn.base import TransformerMixin
log = logging.getLogger(__name__)
class CategoricalDummyCoder(TransformerMixin):
"""Identifies categorical columns by dtype of object and dummy codes them. Optionally a pandas.DataFrame
can be returned where categories are of pandas.Category dtype and not binarized for better coding strategies
than dummy coding."""
def __init__(self, only_categoricals=False):
self.categorical_variables = []
self.categories_per_column = {}
self.only_categoricals = only_categoricals
def fit(self, X, y):
self.categorical_variables = list(X.select_dtypes(include=['object']).columns)
logging.debug(f'identified the following categorical variables: {self.categorical_variables}')
for col in self.categorical_variables:
self.categories_per_column[col] = X[col].astype('category').cat.categories
logging.debug('fitted categories')
return self
def transform(self, X):
for col in self.categorical_variables:
logging.debug(f'transforming cat col: {col}')
X[col] = pd.Categorical(X[col], categories=self.categories_per_column[col])
if self.only_categoricals:
X[col] = X[col].cat.codes
if not self.only_categoricals:
return pd.get_dummies(X, sparse=True)
else:
return X
对于 One Hot Encoding,我建议使用 ColumnTransformer 和 OneHotEncoder 而不是 get_dummies。这是因为 OneHotEncoder returns 一个对象,可用于使用您在训练数据上使用的相同映射对看不见的样本进行编码。
以下代码对 columns_to_encode 变量中提供的所有列进行编码:
import pandas as pd
import numpy as np
df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300],
'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
'label': [1, 0, 0]})
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')
X = np.array(ct.fit_transform(X))
X:
array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 100],
[0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 200],
[0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 300]], dtype=object)
为了避免 multicollinearity due to the dummy variable trap,我还建议删除您编码的每一列返回的列之一。以下代码对 columns_to_encode 变量 AND 中提供的所有列进行编码,它删除每个热编码列的最后一列:
import pandas as pd
import numpy as np
def sum_prev (l_in):
l_out = []
l_out.append(l_in[0])
for i in range(len(l_in)-1):
l_out.append(l_out[i] + l_in[i+1])
return [e - 1 for e in l_out]
df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300],
'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
'label': [1, 0, 0]})
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')
columns_to_encode = [df.iloc[:, del_idx].nunique() for del_idx in columns_to_encode]
columns_to_encode = sum_prev(columns_to_encode)
X = np.array(ct.fit_transform(X))
X = np.delete(X, columns_to_encode, 1)
X:
array([[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 100],
[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 200],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 300]], dtype=object)
如何在某些列不需要编码的情况下将 pandas 数据帧转换为 sklearn one-hot-encoded(数据帧/numpy 数组)?
mydf = pd.DataFrame({'Target':[0,1,0,0,1, 1,1],
'GroupFoo':[1,1,2,2,3,1,2],
'GroupBar':[2,1,1,0,3,1,2],
'GroupBar2':[2,1,1,0,3,1,2],
'SomeOtherShouldBeUnaffected':[2,1,1,0,3,1,2]})
columnsToEncode = ['GroupFoo', 'GroupBar']
是一个已经标记编码的数据框,我想只对标记为 columnsToEncode
的列进行编码吗?
我的问题是我不确定 pd.Dataframe
或 numpy
数组表示是否更好以及如何将编码部分与另一个重新合并。
我目前的尝试:
myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(X_train)
df = pd.concat([
df[~columnsToEncode], # select all other / numeric
# select category to one-hot encode
pd.Dataframe(encoder.transform(X_train[columnsToEncode]))#.toarray() # not sure what this is for
], axis=1).reindex_axis(X_train.columns, axis=1)
注意:我知道
这个库提供了几个分类编码器,使 sklearn / numpy 与 pandas https://github.com/wdm0006/categorical_encoding
但是,他们还不支持"handle unknown category"
现在我将使用
myEncoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
myEncoder.fit(df[columnsToEncode])
pd.concat([df.drop(columnsToEncode, 1),
pd.DataFrame(myEncoder.transform(df[columnsToEncode]))], axis=1).reindex()
因为它支持未知数据集。现在,我会坚持使用 half-pandas half-numpy 因为漂亮的 pandas 标签。对于数字列。
我相信这个对初始答案的更新更好,以便执行虚拟编码 导入日志记录
import pandas as pd
from sklearn.base import TransformerMixin
log = logging.getLogger(__name__)
class CategoricalDummyCoder(TransformerMixin):
"""Identifies categorical columns by dtype of object and dummy codes them. Optionally a pandas.DataFrame
can be returned where categories are of pandas.Category dtype and not binarized for better coding strategies
than dummy coding."""
def __init__(self, only_categoricals=False):
self.categorical_variables = []
self.categories_per_column = {}
self.only_categoricals = only_categoricals
def fit(self, X, y):
self.categorical_variables = list(X.select_dtypes(include=['object']).columns)
logging.debug(f'identified the following categorical variables: {self.categorical_variables}')
for col in self.categorical_variables:
self.categories_per_column[col] = X[col].astype('category').cat.categories
logging.debug('fitted categories')
return self
def transform(self, X):
for col in self.categorical_variables:
logging.debug(f'transforming cat col: {col}')
X[col] = pd.Categorical(X[col], categories=self.categories_per_column[col])
if self.only_categoricals:
X[col] = X[col].cat.codes
if not self.only_categoricals:
return pd.get_dummies(X, sparse=True)
else:
return X
对于 One Hot Encoding,我建议使用 ColumnTransformer 和 OneHotEncoder 而不是 get_dummies。这是因为 OneHotEncoder returns 一个对象,可用于使用您在训练数据上使用的相同映射对看不见的样本进行编码。
以下代码对 columns_to_encode 变量中提供的所有列进行编码:
import pandas as pd
import numpy as np
df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300],
'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
'label': [1, 0, 0]})
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')
X = np.array(ct.fit_transform(X))
X:
array([[1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 100],
[0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 200],
[0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 300]], dtype=object)
为了避免 multicollinearity due to the dummy variable trap,我还建议删除您编码的每一列返回的列之一。以下代码对 columns_to_encode 变量 AND 中提供的所有列进行编码,它删除每个热编码列的最后一列:
import pandas as pd
import numpy as np
def sum_prev (l_in):
l_out = []
l_out.append(l_in[0])
for i in range(len(l_in)-1):
l_out.append(l_out[i] + l_in[i+1])
return [e - 1 for e in l_out]
df = pd.DataFrame({'cat_1': ['A1', 'B1', 'C1'], 'num_1': [100, 200, 300],
'cat_2': ['A2', 'B2', 'C2'], 'cat_3': ['A3', 'B3', 'C3'],
'label': [1, 0, 0]})
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
columns_to_encode = [0, 2, 3] # Change here
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), columns_to_encode)], remainder='passthrough')
columns_to_encode = [df.iloc[:, del_idx].nunique() for del_idx in columns_to_encode]
columns_to_encode = sum_prev(columns_to_encode)
X = np.array(ct.fit_transform(X))
X = np.delete(X, columns_to_encode, 1)
X:
array([[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 100],
[0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 200],
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 300]], dtype=object)