更新线段树

Update in Segment Tree

我正在学习线段树,我遇到了这个问题。 有数组A和2种操作

1. Find the Sum in Range L to R 
2. Update the Element in Range L to R by Value X.

更新应该是这样的

A[L] = 1*X;
A[L+1] = 2*X;
A[L+2] = 3*X;
A[R] = (R-L+1)*X;

我应该如何处理第二种类型的查询 谁能提供一些算法来修改线段树,或者有更好的解决方案

因此,需要有效更新区间[L,R]等差数列对应的值X,并使能够有效地找到不同区间的总和。

为了有效地解决这个问题 - 让我们使用 具有惰性传播的线段树

基本思路如下:

  • 等差数列可以由firstlast项和amount of items

  • 项定义
  • 两个不同等差数列的firstlast项组合可以得到一个新的等差数列具有相同数量的项目)。新等差数列的firstlast项只是组合等差数列相应项的组合

  • 因此,我们可以关联线段树的每个节点——等差级数的firstlast值,它跨越给定的区间

  • 在更新期间,对于所有受影响的区间,我们可以通过线段树延迟传播 - firstlast 项的值,并更新聚合总和这些间隔。

因此,给定问题的线段树节点将具有以下结构:

class Node {
    int left; // Left boundary of the current SegmentTree node
    int right; // Right boundary of the current SegmentTree node

    int sum; // Sum on the interval [left,right]

    int first; // First item of arithmetic progression inside given node
    int last; // Last item of arithmetic progression

    Node left_child;
    Node right_child;

    // Constructor
    Node(int[] arr, int l, int r) { ... }

    // Add arithmetic progression with step X on the interval [l,r]
    // O(log(N))
    void add(int l, int r, int X) { ... }

    // Request the sum on the interval [l,r]
    // O(log(N))
    int query(int l, int r) { ... }

    // Lazy Propagation
    // O(1)
    void propagate() { ... }
}

具有惰性传播的线段树的特殊性在于,每次遍历树的节点时 - 惰性传播例程(其复杂度为 O( 1)) 对给定节点执行。 因此,下面提供了一些任意节点的惰性传播逻辑的说明,该节点具有子节点:

可以看到,在Lazy Propagation过程中,更新了子节点等差数列的firstlast项,同时更新了父节点内部的sum项也更新了。

实施

下面提供了所描述方法的 Java 实现(附加注释):

class Node {
    int left; // Left boundary of the current SegmentTree node
    int right; // Right boundary of the current SegmentTree node
    int sum; // Sum on the interval
    int first; // First item of arithmetic progression
    int last; // Last item of arithmetic progression
    Node left_child;
    Node right_child;

    /**
     * Construction of a Segment Tree
     * which spans over the interval [l,r]
     */
    Node(int[] arr, int l, int r) {
        left = l;
        right = r;
        if (l == r) { // Leaf
            sum = arr[l];
        } else { // Construct children
            int m = (l + r) / 2;
            left_child = new Node(arr, l, m);
            right_child = new Node(arr, m + 1, r);
            // Update accumulated sum
            sum = left_child.sum + right_child.sum;
        }
    }

    /**
     * Lazily adds the values of the arithmetic progression
     * with step X on the interval [l, r]
     * O(log(N))
     */
    void add(int l, int r, int X) {
        // Lazy propagation
        propagate();
        if ((r < left) || (right < l)) {
            // If updated interval doesn't overlap with current subtree
            return;
        } else if ((l <= left) && (right <= r)) {
            // If updated interval fully covers the current subtree
            // Update the first and last items of the arithmetic progression
            int first_item_offset = (left - l) + 1;
            int last_item_offset = (right - l) + 1;
            first = X * first_item_offset;
            last = X * last_item_offset;
            // Lazy propagation
            propagate();
        } else {
            // If updated interval partially overlaps with current subtree
            left_child.add(l, r, X);
            right_child.add(l, r, X);
            // Update accumulated sum
            sum = left_child.sum + right_child.sum;
        }
    }

    /**
     * Returns the sum on the interval [l, r]
     * O(log(N))
     */
    int query(int l, int r) {
        // Lazy propagation
        propagate();
        if ((r < left) || (right < l)) {
            // If requested interval doesn't overlap with current subtree
            return 0;
        } else if ((l <= left) && (right <= r)) {
            // If requested interval fully covers the current subtree
            return sum;
        } else {
            // If requested interval partially overlaps with current subtree
            return left_child.query(l, r) + right_child.query(l, r);
        }
    }

    /**
     * Lazy propagation
     * O(1)
     */
    void propagate() {
        // Update the accumulated value
        // with the sum of Arithmetic Progression
        int items_count = (right - left) + 1;
        sum += ((first + last) * items_count) / 2;
        if (right != left) { // Current node is not a leaf
            // Calculate the step of the Arithmetic Progression of the current node
            int step = (last - first) / (items_count - 1);
            // Update the first and last items of the arithmetic progression
            // inside the left and right subtrees
            // Distribute the arithmetic progression between child nodes
            // [a(1) to a(N)] -> [a(1) to a(N/2)] and [a(N/2+1) to a(N)]
            int mid = (items_count - 1) / 2;
            left_child.first += first;
            left_child.last += first + (step * mid);
            right_child.first += first + (step * (mid + 1));
            right_child.last += last;
        }
        // Reset the arithmetic progression of the current node
        first = 0;
        last = 0;
    }
}

提供的解决方案中的线段树是显式实现的 - 使用对象和引用,但是可以轻松修改它以改用数组。

测试

下面提供了比较两种实现的随机测试:

  • 通过使用 O(N) 顺序增加数组的每个项目来处理查询,并使用 O(N)[=81] 计算间隔总和=]
  • 使用具有 O(log(N)) 复杂度的线段树处理相同的查询:

Java 随机测试的实施:

public static void main(String[] args) {
    // Initialize the random generator with predefined seed,
    // in order to make the test reproducible
    Random rnd = new Random(1);

    int test_cases_num = 20;
    int max_arr_size = 100;
    int num_queries = 50;
    int max_progression_step = 20;

    for (int test = 0; test < test_cases_num; test++) {
        // Create array of the random length
        int[] arr = new int[rnd.nextInt(max_arr_size) + 1];
        Node segmentTree = new Node(arr, 0, arr.length - 1);

        for (int query = 0; query < num_queries; query++) {
            if (rnd.nextDouble() < 0.5) {
                // Update on interval [l,r]
                int l = rnd.nextInt(arr.length);
                int r = rnd.nextInt(arr.length - l) + l;
                int X = rnd.nextInt(max_progression_step);
                update_sequential(arr, l, r, X); // O(N)
                segmentTree.add(l, r, X); // O(log(N))
            }
            else {
                // Request sum on interval [l,r]
                int l = rnd.nextInt(arr.length);
                int r = rnd.nextInt(arr.length - l) + l;
                int expected = query_sequential(arr, l, r); // O(N)
                int actual = segmentTree.query(l, r); // O(log(N))
                if (expected != actual) {
                    throw new RuntimeException("Results are different!");
                }
            }
        }
    }
    System.out.println("All results are equal!");
}

static void update_sequential(int[] arr, int left, int right, int X) {
    for (int i = left; i <= right; i++) {
        arr[i] += X * ((i - left) + 1);
    }
}

static int query_sequential(int[] arr, int left, int right) {
    int sum = 0;
    for (int i = left; i <= right; i++) {
        sum += arr[i];
    }
    return sum;
}

基本上你需要做一棵树,然后使用惰性传播进行更新,这里是实现。

int tree[1 << 20], Base = 1 << 19;
int lazy[1 << 20];
void propagation(int v){ //standard propagation
  tree[v * 2] += lazy[v];
  tree[v * 2 + 1] += lazy[v];
  lazy[v * 2] += lazy[v];
  lazy[v * 2 + 1] += lazy[v];
  lazy[v] == 0;
}
void update(int a, int b, int c, int v = 1, int p = 1, int k = Base){
  if(p > b || k < a) return; //if outside range [a, b]
  propagation(v);
  if(p >= a && k <= b){ // if fully inside range [a, b]
    tree[v] += c;
    lazy[v] += c;
    return;
  }
  update(a, b, c, v * 2, p, (p + k) / 2); //left child
  update(a, b, c, v * 2 + 1, (p + k) / 2 + 1, k); //right child
  tree[v] = tree[v * 2] + tree[v * 2 + 1]; //update current node
}
int query(int a, int b, int v = 1, int p = 1, int k = Base){
  if(p > b || k < a) //if outside range [a, b]
    return 0;
  propagation(v);
  if(p >= a && k <= b) // if fully inside range [a, b]
    return tree[v];
  int res = 0;
  res += query(a, b, c, v * 2, p, (p + k) / 2); //left child
  res += query(a, b, c, v * 2 + 1, (p + k) / 2 + 1, k); //right child
  tree[v] = tree[v * 2] + tree[v * 2 + 1]; //update current node
  return res;
}

更新函数显然会更新树,因此它会添加到区间 [a, b](或 [L, R])上的节点

update(L, R, value);

查询函数只给出范围内元素的总和

query(L, R);

第二个操作可以看成是在区间[L,R]上加一段,两端点为(L,x),(R,(R-L+1)*x),斜率为1.

区间修改的线段树最需要考虑的是是否可以合并惰性标签。如果我们将修改视为添加段,我们可以发现两个段可以很容易地合并——我们只需要更新斜率和端点。对于每个区间,我们只需要维护这个区间的斜率和线段起点。通过使用惰性标记技术,我们可以很容易地实现O(nlogn)时间复杂度的查询区间求和和区间修改。