二维矩阵中大小为 HxW 的最大子数组
Maximum subarray of size HxW within a 2D matrix
给定一个二维正整数数组,找到大小为 HxW 且总和最大的子矩形。矩形的总和是该矩形中所有元素的总和。
输入:
具有正元素的二维数组 NxN
子矩形的 HxW 大小
输出:
其元素和最大的 HxW 大小的子矩阵。
我已经用暴力法解决了这个问题,但是,我现在正在寻找一个复杂度更高的更好的解决方案(我的暴力法的复杂度是 O(n6)).
首先创建矩阵的累加和:O(n2)
Matrix
2 4 5 6
2 3 1 4
2 0 2 1
Cumulative sum
2 6 11 17
4 11 17 27
6 13 21 32
cumulative_sum(i,j)
是submatrix (0:i,0:j)
中所有元素的和。
您可以使用以下逻辑计算累积和矩阵:
cumulative_sum(i,j) = cumulative_sum(i-1,j) + cumulative_sum(i,j-1) - cumulative_sum(i-1,j-1) + matrix(i,j)
使用累积和矩阵,您可以在 O(1) 中计算每个子矩阵的总和:
calculating sum of submatrix (r1 ... r2 , c1 ... c2)
sum_sub = cumulative_sum(r2,c2) - cumulative_sum(r1-1,c2) - cumulative_sum(r2,c1-1) + cumulative_sum(r1-1,c1-1)
然后使用两个循环,您可以将 HW 矩形的左上角放在矩阵的每个点上,并计算该矩形的总和。
for r1=0->n_rows
for c1=0->n_cols
r2 = r1 + height - 1
c2 = c1 + width - 1
if valid(r1,c1,r2,c2) // doesn't exceed the original matrix
sum_sub = ... // formula mentioned above
best = max(sum_sub, best)
return best
这种方法在O(N2).
这里是 python 实现:
from copy import deepcopy
def findMaxSubmatrix(matrix, height, width):
nrows = len(matrix)
ncols = len(matrix[0])
cumulative_sum = deepcopy(matrix)
for r in range(nrows):
for c in range(ncols):
if r == 0 and c == 0:
cumulative_sum[r][c] = matrix[r][c]
elif r == 0:
cumulative_sum[r][c] = cumulative_sum[r][c-1] + matrix[r][c]
elif c == 0:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + matrix[r][c]
else:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + cumulative_sum[r][c-1] - cumulative_sum[r-1][c-1] + matrix[r][c]
best = 0
best_pos = None
for r1 in range(nrows):
for c1 in range(ncols):
r2 = r1 + height - 1
c2 = c1 + width - 1
if r2 >= nrows or c2 >= ncols:
continue
if r1 == 0 and c1 == 0:
sub_sum = cumulative_sum[r2][c2]
elif r1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r2][c1-1]
elif c1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2]
else:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2] - cumulative_sum[r2][c1-1] + cumulative_sum[r1-1][c1-1]
if best < sub_sum:
best_pos = r1,c1
best = sub_sum
print "maximum sum is:", best
print "top left corner on:", best_pos
matrix = [ [2,4,5,6],
[2,3,1,4],
[2,0,2,1] ]
findMaxSubmatrix(matrix,2,2)
输出
maximum sum is: 16
top left corner on: (0, 2)
给定一个二维正整数数组,找到大小为 HxW 且总和最大的子矩形。矩形的总和是该矩形中所有元素的总和。
输入: 具有正元素的二维数组 NxN 子矩形的 HxW 大小
输出: 其元素和最大的 HxW 大小的子矩阵。
我已经用暴力法解决了这个问题,但是,我现在正在寻找一个复杂度更高的更好的解决方案(我的暴力法的复杂度是 O(n6)).
首先创建矩阵的累加和:O(n2)
Matrix
2 4 5 6
2 3 1 4
2 0 2 1
Cumulative sum
2 6 11 17
4 11 17 27
6 13 21 32
cumulative_sum(i,j)
是submatrix (0:i,0:j)
中所有元素的和。
您可以使用以下逻辑计算累积和矩阵:
cumulative_sum(i,j) = cumulative_sum(i-1,j) + cumulative_sum(i,j-1) - cumulative_sum(i-1,j-1) + matrix(i,j)
使用累积和矩阵,您可以在 O(1) 中计算每个子矩阵的总和:
calculating sum of submatrix (r1 ... r2 , c1 ... c2)
sum_sub = cumulative_sum(r2,c2) - cumulative_sum(r1-1,c2) - cumulative_sum(r2,c1-1) + cumulative_sum(r1-1,c1-1)
然后使用两个循环,您可以将 HW 矩形的左上角放在矩阵的每个点上,并计算该矩形的总和。
for r1=0->n_rows
for c1=0->n_cols
r2 = r1 + height - 1
c2 = c1 + width - 1
if valid(r1,c1,r2,c2) // doesn't exceed the original matrix
sum_sub = ... // formula mentioned above
best = max(sum_sub, best)
return best
这种方法在O(N2).
这里是 python 实现:
from copy import deepcopy
def findMaxSubmatrix(matrix, height, width):
nrows = len(matrix)
ncols = len(matrix[0])
cumulative_sum = deepcopy(matrix)
for r in range(nrows):
for c in range(ncols):
if r == 0 and c == 0:
cumulative_sum[r][c] = matrix[r][c]
elif r == 0:
cumulative_sum[r][c] = cumulative_sum[r][c-1] + matrix[r][c]
elif c == 0:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + matrix[r][c]
else:
cumulative_sum[r][c] = cumulative_sum[r-1][c] + cumulative_sum[r][c-1] - cumulative_sum[r-1][c-1] + matrix[r][c]
best = 0
best_pos = None
for r1 in range(nrows):
for c1 in range(ncols):
r2 = r1 + height - 1
c2 = c1 + width - 1
if r2 >= nrows or c2 >= ncols:
continue
if r1 == 0 and c1 == 0:
sub_sum = cumulative_sum[r2][c2]
elif r1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r2][c1-1]
elif c1 == 0:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2]
else:
sub_sum = cumulative_sum[r2][c2] - cumulative_sum[r1-1][c2] - cumulative_sum[r2][c1-1] + cumulative_sum[r1-1][c1-1]
if best < sub_sum:
best_pos = r1,c1
best = sub_sum
print "maximum sum is:", best
print "top left corner on:", best_pos
matrix = [ [2,4,5,6],
[2,3,1,4],
[2,0,2,1] ]
findMaxSubmatrix(matrix,2,2)
输出
maximum sum is: 16
top left corner on: (0, 2)