使用 Python 的 numpy 实现随机梯度下降
Stochastic gradient descent implementation with Python's numpy
我必须使用 python numpy 库实现随机梯度下降。为此,我给出了以下函数定义:
def compute_stoch_gradient(y, tx, w):
"""Compute a stochastic gradient for batch data."""
def stochastic_gradient_descent(
y, tx, initial_w, batch_size, max_epochs, gamma):
"""Stochastic gradient descent algorithm."""
我还获得了以下帮助功能:
def batch_iter(y, tx, batch_size, num_batches=1, shuffle=True):
"""
Generate a minibatch iterator for a dataset.
Takes as input two iterables (here the output desired values 'y' and the input data 'tx')
Outputs an iterator which gives mini-batches of `batch_size` matching elements from `y` and `tx`.
Data can be randomly shuffled to avoid ordering in the original data messing with the randomness of the minibatches.
Example of use :
for minibatch_y, minibatch_tx in batch_iter(y, tx, 32):
<DO-SOMETHING>
"""
data_size = len(y)
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_y = y[shuffle_indices]
shuffled_tx = tx[shuffle_indices]
else:
shuffled_y = y
shuffled_tx = tx
for batch_num in range(num_batches):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
if start_index != end_index:
yield shuffled_y[start_index:end_index], shuffled_tx[start_index:end_index]
我实现了以下两个功能:
def compute_stoch_gradient(y, tx, w):
"""Compute a stochastic gradient for batch data."""
e = y - tx.dot(w)
return (-1/y.shape[0])*tx.transpose().dot(e)
def stochastic_gradient_descent(y, tx, initial_w, batch_size, max_epochs, gamma):
"""Stochastic gradient descent algorithm."""
ws = [initial_w]
losses = []
w = initial_w
for n_iter in range(max_epochs):
for minibatch_y,minibatch_x in batch_iter(y,tx,batch_size):
w = ws[n_iter] - gamma * compute_stoch_gradient(minibatch_y,minibatch_x,ws[n_iter])
ws.append(np.copy(w))
loss = y - tx.dot(w)
losses.append(loss)
return losses, ws
我不确定应该在范围 (max_epochs) 或更大的范围内进行迭代。我这样说是因为我读到一个纪元是 "each time we run through the entire data set"。所以我认为一个时代包含更多的一次迭代...
在典型的实现中,批量大小为 B 的小批量梯度下降应从数据集中随机选取 B 个数据点,并根据该子集上计算出的梯度更新权重。这个过程本身会持续很多次,直到收敛或某个阈值最大迭代。 B=1 的 mini-batch 是 SGD,有时会有噪音。
除了上述评论外,您可能还想尝试一下批量大小和学习率(步长),因为它们对随机和小批量梯度下降的收敛速度有重要影响。
下图显示了这两个参数对 SGD
和 logistic regression
的收敛速度的影响,同时对亚马逊产品评论数据集进行情感分析,该作业出现在 coursera 课程中机器学习 - 华盛顿大学的分类:
我必须使用 python numpy 库实现随机梯度下降。为此,我给出了以下函数定义:
def compute_stoch_gradient(y, tx, w):
"""Compute a stochastic gradient for batch data."""
def stochastic_gradient_descent(
y, tx, initial_w, batch_size, max_epochs, gamma):
"""Stochastic gradient descent algorithm."""
我还获得了以下帮助功能:
def batch_iter(y, tx, batch_size, num_batches=1, shuffle=True):
"""
Generate a minibatch iterator for a dataset.
Takes as input two iterables (here the output desired values 'y' and the input data 'tx')
Outputs an iterator which gives mini-batches of `batch_size` matching elements from `y` and `tx`.
Data can be randomly shuffled to avoid ordering in the original data messing with the randomness of the minibatches.
Example of use :
for minibatch_y, minibatch_tx in batch_iter(y, tx, 32):
<DO-SOMETHING>
"""
data_size = len(y)
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_y = y[shuffle_indices]
shuffled_tx = tx[shuffle_indices]
else:
shuffled_y = y
shuffled_tx = tx
for batch_num in range(num_batches):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
if start_index != end_index:
yield shuffled_y[start_index:end_index], shuffled_tx[start_index:end_index]
我实现了以下两个功能:
def compute_stoch_gradient(y, tx, w):
"""Compute a stochastic gradient for batch data."""
e = y - tx.dot(w)
return (-1/y.shape[0])*tx.transpose().dot(e)
def stochastic_gradient_descent(y, tx, initial_w, batch_size, max_epochs, gamma):
"""Stochastic gradient descent algorithm."""
ws = [initial_w]
losses = []
w = initial_w
for n_iter in range(max_epochs):
for minibatch_y,minibatch_x in batch_iter(y,tx,batch_size):
w = ws[n_iter] - gamma * compute_stoch_gradient(minibatch_y,minibatch_x,ws[n_iter])
ws.append(np.copy(w))
loss = y - tx.dot(w)
losses.append(loss)
return losses, ws
我不确定应该在范围 (max_epochs) 或更大的范围内进行迭代。我这样说是因为我读到一个纪元是 "each time we run through the entire data set"。所以我认为一个时代包含更多的一次迭代...
在典型的实现中,批量大小为 B 的小批量梯度下降应从数据集中随机选取 B 个数据点,并根据该子集上计算出的梯度更新权重。这个过程本身会持续很多次,直到收敛或某个阈值最大迭代。 B=1 的 mini-batch 是 SGD,有时会有噪音。
除了上述评论外,您可能还想尝试一下批量大小和学习率(步长),因为它们对随机和小批量梯度下降的收敛速度有重要影响。
下图显示了这两个参数对 SGD
和 logistic regression
的收敛速度的影响,同时对亚马逊产品评论数据集进行情感分析,该作业出现在 coursera 课程中机器学习 - 华盛顿大学的分类: