使用 dplyr 按组将 NA 替换为上一个或下一个值
Replace NA with previous or next value, by group, using dplyr
我有一个按日期降序排列的数据框。
ps1 = data.frame(userID = c(21,21,21,22,22,22,23,23,23),
color = c(NA,'blue','red','blue',NA,NA,'red',NA,'gold'),
age = c('3yrs','2yrs',NA,NA,'3yrs',NA,NA,'4yrs',NA),
gender = c('F',NA,'M',NA,NA,'F','F',NA,'F')
)
我希望用以前的值估算(替换)NA 值
并按 userID 分组
如果用户 ID 的第一行有 NA,则替换为该用户 ID 组的下一组值。
我正在尝试使用类似这样的 dplyr 和 zoo 包...但它不起作用
cleanedFUG <- filteredUserGroup %>%
group_by(UserID) %>%
mutate(Age1 = na.locf(Age),
Color1 = na.locf(Color),
Gender1 = na.locf(Gender) )
我需要这样的结果 df:
userID color age gender
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F
直接使用zoo::na.locf
整体data.frame会填充NA,而不管userID
组。不幸的是,包 dplyr 的分组对 na.locf
函数没有影响,这就是我进行拆分的原因:
library(dplyr); library(zoo)
ps1 %>% split(ps1$userID) %>%
lapply(function(x) {na.locf(na.locf(x), fromLast=T)}) %>%
do.call(rbind, .)
#### userID color age gender
#### 21.1 21 blue 3yrs F
#### 21.2 21 blue 2yrs F
#### 21.3 21 red 2yrs M
#### 22.4 22 blue 3yrs F
#### 22.5 22 blue 3yrs F
#### 22.6 22 blue 3yrs F
#### 23.7 23 red 4yrs F
#### 23.8 23 red 4yrs F
#### 23.9 23 gold 4yrs F
它所做的是首先将数据分成 3 data.frames,然后我应用第一遍插补(向下),然后使用 lapply
中的匿名函数向上,并且最终使用 rbind
将 data.frame 重新组合在一起。你有预期的输出。
require(tidyverse) #fill is part of tidyr
ps1 %>%
group_by(userID) %>%
fill(color, age, gender) %>% #default direction down
fill(color, age, gender, .direction = "up")
这给你:
Source: local data frame [9 x 4]
Groups: userID [3]
userID color age gender
<dbl> <fctr> <fctr> <fctr>
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F
将@agenis 方法与 na.locf()
结合使用 purrr
,您可以:
library(purrr)
library(zoo)
ps1 %>%
slice_rows("userID") %>%
by_slice(function(x) {
na.locf(na.locf(x), fromLast=T) },
.collate = "rows")
我写了这个函数,它肯定比 fill 快,而且可能比 na.locf:
fill_NA <- function(x) {
which.na <- c(which(!is.na(x)), length(x) + 1)
values <- na.omit(x)
if (which.na[1] != 1) {
which.na <- c(1, which.na)
values <- c(values[1], values)
}
diffs <- diff(which.na)
return(rep(values, times = diffs))
}
几年下来,我发现事情发生了变化。
使用@Steven Beaupré 的方法,
1) 添加 na.rm=F
确保没有行是 deleted/excluded。
2) slide_rows()
函数可以在purrrlyr
包中找到。
library(purrrlyr)
library(zoo)
ps1 %>%
slice_rows("userID") %>%
by_slice(function(x) {
na.locf(na.locf(x, na.rm=F), fromLast=T, na.rm=F) },
.collate = "rows")
我有一个按日期降序排列的数据框。
ps1 = data.frame(userID = c(21,21,21,22,22,22,23,23,23),
color = c(NA,'blue','red','blue',NA,NA,'red',NA,'gold'),
age = c('3yrs','2yrs',NA,NA,'3yrs',NA,NA,'4yrs',NA),
gender = c('F',NA,'M',NA,NA,'F','F',NA,'F')
)
我希望用以前的值估算(替换)NA 值 并按 userID 分组 如果用户 ID 的第一行有 NA,则替换为该用户 ID 组的下一组值。
我正在尝试使用类似这样的 dplyr 和 zoo 包...但它不起作用
cleanedFUG <- filteredUserGroup %>%
group_by(UserID) %>%
mutate(Age1 = na.locf(Age),
Color1 = na.locf(Color),
Gender1 = na.locf(Gender) )
我需要这样的结果 df:
userID color age gender
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F
直接使用zoo::na.locf
整体data.frame会填充NA,而不管userID
组。不幸的是,包 dplyr 的分组对 na.locf
函数没有影响,这就是我进行拆分的原因:
library(dplyr); library(zoo)
ps1 %>% split(ps1$userID) %>%
lapply(function(x) {na.locf(na.locf(x), fromLast=T)}) %>%
do.call(rbind, .)
#### userID color age gender
#### 21.1 21 blue 3yrs F
#### 21.2 21 blue 2yrs F
#### 21.3 21 red 2yrs M
#### 22.4 22 blue 3yrs F
#### 22.5 22 blue 3yrs F
#### 22.6 22 blue 3yrs F
#### 23.7 23 red 4yrs F
#### 23.8 23 red 4yrs F
#### 23.9 23 gold 4yrs F
它所做的是首先将数据分成 3 data.frames,然后我应用第一遍插补(向下),然后使用 lapply
中的匿名函数向上,并且最终使用 rbind
将 data.frame 重新组合在一起。你有预期的输出。
require(tidyverse) #fill is part of tidyr
ps1 %>%
group_by(userID) %>%
fill(color, age, gender) %>% #default direction down
fill(color, age, gender, .direction = "up")
这给你:
Source: local data frame [9 x 4]
Groups: userID [3]
userID color age gender
<dbl> <fctr> <fctr> <fctr>
1 21 blue 3yrs F
2 21 blue 2yrs F
3 21 red 2yrs M
4 22 blue 3yrs F
5 22 blue 3yrs F
6 22 blue 3yrs F
7 23 red 4yrs F
8 23 red 4yrs F
9 23 gold 4yrs F
将@agenis 方法与 na.locf()
结合使用 purrr
,您可以:
library(purrr)
library(zoo)
ps1 %>%
slice_rows("userID") %>%
by_slice(function(x) {
na.locf(na.locf(x), fromLast=T) },
.collate = "rows")
我写了这个函数,它肯定比 fill 快,而且可能比 na.locf:
fill_NA <- function(x) {
which.na <- c(which(!is.na(x)), length(x) + 1)
values <- na.omit(x)
if (which.na[1] != 1) {
which.na <- c(1, which.na)
values <- c(values[1], values)
}
diffs <- diff(which.na)
return(rep(values, times = diffs))
}
几年下来,我发现事情发生了变化。 使用@Steven Beaupré 的方法,
1) 添加 na.rm=F
确保没有行是 deleted/excluded。
2) slide_rows()
函数可以在purrrlyr
包中找到。
library(purrrlyr)
library(zoo)
ps1 %>%
slice_rows("userID") %>%
by_slice(function(x) {
na.locf(na.locf(x, na.rm=F), fromLast=T, na.rm=F) },
.collate = "rows")