使用 dplyr 按组将 NA 替换为上一个或下一个值

Replace NA with previous or next value, by group, using dplyr

我有一个按日期降序排列的数据框。

ps1 = data.frame(userID = c(21,21,21,22,22,22,23,23,23), 
             color = c(NA,'blue','red','blue',NA,NA,'red',NA,'gold'), 
             age = c('3yrs','2yrs',NA,NA,'3yrs',NA,NA,'4yrs',NA), 
             gender = c('F',NA,'M',NA,NA,'F','F',NA,'F') 
)

我希望用以前的值估算(替换)NA 值 并按 userID 分组 如果用户 ID 的第一行有 NA,则替换为该用户 ID 组的下一组值。

我正在尝试使用类似这样的 dplyr 和 zoo 包...但它不起作用

cleanedFUG <- filteredUserGroup %>%
 group_by(UserID) %>%
 mutate(Age1 = na.locf(Age), 
     Color1 = na.locf(Color), 
     Gender1 = na.locf(Gender) ) 

我需要这样的结果 df:

                      userID color  age gender
                1     21  blue 3yrs      F
                2     21  blue 2yrs      F
                3     21   red 2yrs      M
                4     22  blue 3yrs      F
                5     22  blue 3yrs      F
                6     22  blue 3yrs      F
                7     23   red 4yrs      F
                8     23   red 4yrs      F
                9     23  gold 4yrs      F

直接使用zoo::na.locf整体data.frame会填充NA,而不管userID组。不幸的是,包 dplyr 的分组对 na.locf 函数没有影响,这就是我进行拆分的原因:

library(dplyr); library(zoo)
ps1 %>% split(ps1$userID) %>% 
  lapply(function(x) {na.locf(na.locf(x), fromLast=T)}) %>% 
  do.call(rbind, .)
####      userID color  age gender
#### 21.1     21  blue 3yrs      F
#### 21.2     21  blue 2yrs      F
#### 21.3     21   red 2yrs      M
#### 22.4     22  blue 3yrs      F
#### 22.5     22  blue 3yrs      F
#### 22.6     22  blue 3yrs      F
#### 23.7     23   red 4yrs      F
#### 23.8     23   red 4yrs      F
#### 23.9     23  gold 4yrs      F

它所做的是首先将数据分成 3 data.frames,然后我应用第一遍插补(向下),然后使用 lapply 中的匿名函数向上,并且最终使用 rbind 将 data.frame 重新组合在一起。你有预期的输出。

require(tidyverse) #fill is part of tidyr

ps1 %>% 
  group_by(userID) %>% 
  fill(color, age, gender) %>% #default direction down
  fill(color, age, gender, .direction = "up")

这给你:

Source: local data frame [9 x 4]
Groups: userID [3]

  userID  color    age gender
   <dbl> <fctr> <fctr> <fctr>
1     21   blue   3yrs      F
2     21   blue   2yrs      F
3     21    red   2yrs      M
4     22   blue   3yrs      F
5     22   blue   3yrs      F
6     22   blue   3yrs      F
7     23    red   4yrs      F
8     23    red   4yrs      F
9     23   gold   4yrs      F

将@agenis 方法与 na.locf() 结合使用 purrr,您可以:

library(purrr)
library(zoo)

ps1 %>% 
  slice_rows("userID") %>% 
  by_slice(function(x) { 
    na.locf(na.locf(x), fromLast=T) }, 
    .collate = "rows") 

我写了这个函数,它肯定比 fill 快,而且可能比 na.locf:

fill_NA <- function(x) {
  which.na <- c(which(!is.na(x)), length(x) + 1)
  values <- na.omit(x)

  if (which.na[1] != 1) {
    which.na <- c(1, which.na)
    values <- c(values[1], values)
  }

  diffs <- diff(which.na)
  return(rep(values, times = diffs))
}

几年下来,我发现事情发生了变化。 使用@Steven Beaupré 的方法,

1) 添加 na.rm=F 确保没有行是 deleted/excluded。 2) slide_rows()函数可以在purrrlyr包中找到。

library(purrrlyr)
library(zoo)

ps1 %>% 
  slice_rows("userID") %>% 
  by_slice(function(x) { 
    na.locf(na.locf(x, na.rm=F), fromLast=T, na.rm=F) }, 
    .collate = "rows")