Networkx:所有生成树及其相关的总权重
Networkx: all Spanning Trees and their associated total weight
给定一个像这样的简单无向网格网络:
import networkx as nx
from pylab import *
import matplotlib.pyplot as plt
%pylab inline
ncols=3
N=3
G=nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
nx.draw_networkx(G, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10)
plt.axis('off')
plt.title('grid')
plt.show()
并且假设每条边都有与其长度对应的权重:
#Weights
from math import sqrt
weights = dict()
for source, target in G.edges():
x1, y1 = pos2[source]
x2, y2 = pos2[target]
weights[(source, target)] = round((math.sqrt((x2-x1)**2 + (y2-y1)**2)),3)
for e in G.edges():
G[e[0]][e[1]] = weights[e] #Assigning weights to G.edges()
如何计算网格中的所有生成树及其相关的总权重?
注意:这是一个微不足道的案例,其中所有权重都为 1。
这花费的时间比预期的要长,但是下面的代码找到了一般情况下的所有生成树。获得相关的总权重应该是微不足道的,因为您可以访问每棵树的边缘列表。
不要在非常大的树上使用它——即使是玩具示例也会产生 192 棵生成树。
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
def _expand(G, explored_nodes, explored_edges):
"""
Expand existing solution by a process akin to BFS.
Arguments:
----------
G: networkx.Graph() instance
full graph
explored_nodes: set of ints
nodes visited
explored_edges: set of 2-tuples
edges visited
Returns:
--------
solutions: list, where each entry in turns contains two sets corresponding to explored_nodes and explored_edges
all possible expansions of explored_nodes and explored_edges
"""
frontier_nodes = list()
frontier_edges = list()
for v in explored_nodes:
for u in nx.neighbors(G,v):
if not (u in explored_nodes):
frontier_nodes.append(u)
frontier_edges.append([(u,v), (v,u)])
return zip([explored_nodes | frozenset([v]) for v in frontier_nodes], [explored_edges | frozenset(e) for e in frontier_edges])
def find_all_spanning_trees(G, root=0):
"""
Find all spanning trees of a Graph.
Arguments:
----------
G: networkx.Graph() instance
full graph
Returns:
ST: list of networkx.Graph() instances
list of all spanning trees
"""
# initialise solution
explored_nodes = frozenset([root])
explored_edges = frozenset([])
solutions = [(explored_nodes, explored_edges)]
# we need to expand solutions number_of_nodes-1 times
for ii in range(G.number_of_nodes()-1):
# get all new solutions
solutions = [_expand(G, nodes, edges) for (nodes, edges) in solutions]
# flatten nested structure and get unique expansions
solutions = set([item for sublist in solutions for item in sublist])
return [nx.from_edgelist(edges) for (nodes, edges) in solutions]
if __name__ == "__main__":
N = 3
G = nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
fig, ax = plt.subplots(1,1)
nx.draw_networkx(G, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10,ax=ax)
plt.axis('off')
plt.title('grid')
ST = find_all_spanning_trees(G)
print len(ST)
for g in ST:
fig, ax = plt.subplots(1,1)
nx.draw_networkx(g, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10,ax=ax)
plt.axis('off')
plt.title('grid')
plt.show()
给定一个像这样的简单无向网格网络:
import networkx as nx
from pylab import *
import matplotlib.pyplot as plt
%pylab inline
ncols=3
N=3
G=nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
nx.draw_networkx(G, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10)
plt.axis('off')
plt.title('grid')
plt.show()
并且假设每条边都有与其长度对应的权重:
#Weights
from math import sqrt
weights = dict()
for source, target in G.edges():
x1, y1 = pos2[source]
x2, y2 = pos2[target]
weights[(source, target)] = round((math.sqrt((x2-x1)**2 + (y2-y1)**2)),3)
for e in G.edges():
G[e[0]][e[1]] = weights[e] #Assigning weights to G.edges()
如何计算网格中的所有生成树及其相关的总权重?
注意:这是一个微不足道的案例,其中所有权重都为 1。
这花费的时间比预期的要长,但是下面的代码找到了一般情况下的所有生成树。获得相关的总权重应该是微不足道的,因为您可以访问每棵树的边缘列表。
不要在非常大的树上使用它——即使是玩具示例也会产生 192 棵生成树。
import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
def _expand(G, explored_nodes, explored_edges):
"""
Expand existing solution by a process akin to BFS.
Arguments:
----------
G: networkx.Graph() instance
full graph
explored_nodes: set of ints
nodes visited
explored_edges: set of 2-tuples
edges visited
Returns:
--------
solutions: list, where each entry in turns contains two sets corresponding to explored_nodes and explored_edges
all possible expansions of explored_nodes and explored_edges
"""
frontier_nodes = list()
frontier_edges = list()
for v in explored_nodes:
for u in nx.neighbors(G,v):
if not (u in explored_nodes):
frontier_nodes.append(u)
frontier_edges.append([(u,v), (v,u)])
return zip([explored_nodes | frozenset([v]) for v in frontier_nodes], [explored_edges | frozenset(e) for e in frontier_edges])
def find_all_spanning_trees(G, root=0):
"""
Find all spanning trees of a Graph.
Arguments:
----------
G: networkx.Graph() instance
full graph
Returns:
ST: list of networkx.Graph() instances
list of all spanning trees
"""
# initialise solution
explored_nodes = frozenset([root])
explored_edges = frozenset([])
solutions = [(explored_nodes, explored_edges)]
# we need to expand solutions number_of_nodes-1 times
for ii in range(G.number_of_nodes()-1):
# get all new solutions
solutions = [_expand(G, nodes, edges) for (nodes, edges) in solutions]
# flatten nested structure and get unique expansions
solutions = set([item for sublist in solutions for item in sublist])
return [nx.from_edgelist(edges) for (nodes, edges) in solutions]
if __name__ == "__main__":
N = 3
G = nx.grid_2d_graph(N,N)
labels = dict( ((i,j), i + (N-1-j) * N ) for i, j in G.nodes() )
nx.relabel_nodes(G,labels,False)
inds=labels.keys()
vals=labels.values()
inds=[(N-j-1,N-i-1) for i,j in inds]
pos2=dict(zip(vals,inds))
fig, ax = plt.subplots(1,1)
nx.draw_networkx(G, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10,ax=ax)
plt.axis('off')
plt.title('grid')
ST = find_all_spanning_trees(G)
print len(ST)
for g in ST:
fig, ax = plt.subplots(1,1)
nx.draw_networkx(g, pos=pos2, with_labels=True, node_size = 200, node_color='orange',font_size=10,ax=ax)
plt.axis('off')
plt.title('grid')
plt.show()