SQL Server 2008 数据透视表查询 - 日期时间
SQL Server 2008 Pivot Query - Datetime
我有多行员工的时间 in/out 的记录,如何查询具有相同 ID、名称但不同时间 in/out 的数据透视表?
如下图所示:
您可以像这样使用旋转:
;WITH dtrTable AS ( --just a test sample of your table
SELECT *
FROM (VALUES
(1, 'emp1', '2016-10-20', '2016-10-20 10:00:00.000', '2016-10-20 15:00:00.000'),
(1, 'emp1', '2016-10-20', '2016-10-20 15:30:00.000', '2016-10-20 17:00:00.000'),
(1, 'emp1', '2016-10-20', '2016-10-20 18:30:00.000', '2016-10-20 19:00:00.000'),
(2, 'emp2', '2016-10-20', '2016-10-20 10:00:00.000', '2016-10-20 19:00:00.000'),
(2, 'emp2', '2016-10-20', '2016-10-20 21:00:00.000', '2016-10-20 22:00:00.000'),
(2, 'emp2', '2016-10-21', '2016-10-20 11:00:00.000', '2016-10-20 21:00:00.000')
) as t(empId, empName, dtrDate, dtrIn, dtrOut)
)
SELECT *
FROM (
SELECT empId,
empName,
dtrDate,
[Columns]+seq as [Columns],
[Values]
FROM (
SELECT *,
CAST(ROW_NUMBER() OVER (PARTITION BY empId, dtrDate ORDER BY dtrIn) as nvarchar(100)) as seq
FROM dtrTable
) as t
UNPIVOT (
[Values] FOR [Columns] IN ([dtrIn],[dtrOut])
) as unpvt
) as d
PIVOT (
MAX([Values]) FOR [Columns] IN ([dtrIn1],[dtrOut1],[dtrIn2],[dtrOut2],[dtrIn3],[dtrOut3])
) as pvt
输出:
empId empName dtrDate dtrIn1 dtrOut1 dtrIn2 dtrOut2 dtrIn3 dtrOut3
1 emp1 2016-10-20 2016-10-20 10:00:00.000 2016-10-20 15:00:00.000 2016-10-20 15:30:00.000 2016-10-20 17:00:00.000 2016-10-20 18:30:00.000 2016-10-20 19:00:00.000
2 emp2 2016-10-20 2016-10-20 10:00:00.000 2016-10-20 19:00:00.000 2016-10-20 21:00:00.000 2016-10-20 22:00:00.000 NULL NULL
2 emp2 2016-10-21 2016-10-20 11:00:00.000 2016-10-20 21:00:00.000 NULL NULL NULL NULL
Unpivot 部分会给你这个 table:
empId empName dtrDate Columns Values
1 emp1 2016-10-20 dtrIn1 2016-10-20 10:00:00.000
1 emp1 2016-10-20 dtrOut1 2016-10-20 15:00:00.000
1 emp1 2016-10-20 dtrIn2 2016-10-20 15:30:00.000
1 emp1 2016-10-20 dtrOut2 2016-10-20 17:00:00.000
1 emp1 2016-10-20 dtrIn3 2016-10-20 18:30:00.000
1 emp1 2016-10-20 dtrOut3 2016-10-20 19:00:00.000
2 emp2 2016-10-20 dtrIn1 2016-10-20 10:00:00.000
2 emp2 2016-10-20 dtrOut1 2016-10-20 19:00:00.000
2 emp2 2016-10-20 dtrIn2 2016-10-20 21:00:00.000
2 emp2 2016-10-20 dtrOut2 2016-10-20 22:00:00.000
2 emp2 2016-10-21 dtrIn1 2016-10-20 11:00:00.000
2 emp2 2016-10-21 dtrOut1 2016-10-20 21:00:00.000
这里我使用 ROW_NUMBER()
和分区来对 来龙去脉 进行排序。 ROW_NUMBER()
生成的数字也有助于创建列,我们不能在数据透视部分使用相同的列名。
我有多行员工的时间 in/out 的记录,如何查询具有相同 ID、名称但不同时间 in/out 的数据透视表?
如下图所示:
您可以像这样使用旋转:
;WITH dtrTable AS ( --just a test sample of your table
SELECT *
FROM (VALUES
(1, 'emp1', '2016-10-20', '2016-10-20 10:00:00.000', '2016-10-20 15:00:00.000'),
(1, 'emp1', '2016-10-20', '2016-10-20 15:30:00.000', '2016-10-20 17:00:00.000'),
(1, 'emp1', '2016-10-20', '2016-10-20 18:30:00.000', '2016-10-20 19:00:00.000'),
(2, 'emp2', '2016-10-20', '2016-10-20 10:00:00.000', '2016-10-20 19:00:00.000'),
(2, 'emp2', '2016-10-20', '2016-10-20 21:00:00.000', '2016-10-20 22:00:00.000'),
(2, 'emp2', '2016-10-21', '2016-10-20 11:00:00.000', '2016-10-20 21:00:00.000')
) as t(empId, empName, dtrDate, dtrIn, dtrOut)
)
SELECT *
FROM (
SELECT empId,
empName,
dtrDate,
[Columns]+seq as [Columns],
[Values]
FROM (
SELECT *,
CAST(ROW_NUMBER() OVER (PARTITION BY empId, dtrDate ORDER BY dtrIn) as nvarchar(100)) as seq
FROM dtrTable
) as t
UNPIVOT (
[Values] FOR [Columns] IN ([dtrIn],[dtrOut])
) as unpvt
) as d
PIVOT (
MAX([Values]) FOR [Columns] IN ([dtrIn1],[dtrOut1],[dtrIn2],[dtrOut2],[dtrIn3],[dtrOut3])
) as pvt
输出:
empId empName dtrDate dtrIn1 dtrOut1 dtrIn2 dtrOut2 dtrIn3 dtrOut3
1 emp1 2016-10-20 2016-10-20 10:00:00.000 2016-10-20 15:00:00.000 2016-10-20 15:30:00.000 2016-10-20 17:00:00.000 2016-10-20 18:30:00.000 2016-10-20 19:00:00.000
2 emp2 2016-10-20 2016-10-20 10:00:00.000 2016-10-20 19:00:00.000 2016-10-20 21:00:00.000 2016-10-20 22:00:00.000 NULL NULL
2 emp2 2016-10-21 2016-10-20 11:00:00.000 2016-10-20 21:00:00.000 NULL NULL NULL NULL
Unpivot 部分会给你这个 table:
empId empName dtrDate Columns Values
1 emp1 2016-10-20 dtrIn1 2016-10-20 10:00:00.000
1 emp1 2016-10-20 dtrOut1 2016-10-20 15:00:00.000
1 emp1 2016-10-20 dtrIn2 2016-10-20 15:30:00.000
1 emp1 2016-10-20 dtrOut2 2016-10-20 17:00:00.000
1 emp1 2016-10-20 dtrIn3 2016-10-20 18:30:00.000
1 emp1 2016-10-20 dtrOut3 2016-10-20 19:00:00.000
2 emp2 2016-10-20 dtrIn1 2016-10-20 10:00:00.000
2 emp2 2016-10-20 dtrOut1 2016-10-20 19:00:00.000
2 emp2 2016-10-20 dtrIn2 2016-10-20 21:00:00.000
2 emp2 2016-10-20 dtrOut2 2016-10-20 22:00:00.000
2 emp2 2016-10-21 dtrIn1 2016-10-20 11:00:00.000
2 emp2 2016-10-21 dtrOut1 2016-10-20 21:00:00.000
这里我使用 ROW_NUMBER()
和分区来对 来龙去脉 进行排序。 ROW_NUMBER()
生成的数字也有助于创建列,我们不能在数据透视部分使用相同的列名。