cuSolverDnDgetrf 不工作的 cuSolver 样本

cuSolver sample with cuSolverDnDgetrf not working

好的。我正在用从 cuSolver 示例中获取的一些代码弄脏我的手。 我对 C++ 经验不足,但我设法从原始代码中获取了我需要的东西。

问题是当我尝试执行它时;按照参考手册的建议,我编译时使用:

nvcc -c att3_cus_lu.cpp -I/usr/local/cuda-8.0/targets/x86_64-linux/include
g++ -fopenmp -o res.out att3_cus_lu.o -L/usr/local/cuda/lib64 -lcudart -lcublas -lcusolver -lcusparse

到这里没问题;我得到的输出总是一样的:

step 1: set matrix (A) and right hand side vector (b)
step 2: prepare data on device
step 3: solve A*x = b
Error: LU factorization failed
INFO_VALUE = 2
timing: LU =   0.000208 sec
step 4: evaluate residual
|b - A*x| = NAN
|A| = 1.000000E+00
|x| = NAN
|b - A*x|/(|A|*|x|) = NAN

无论我输入什么矩阵或b向量,结果都是一样的;代码无法分解矩阵。 我已经展示了 INFO_VALUE 每次执行时其值始终为 2;它是为 cuSolverDnDgetrf() 函数请求的 info 变量的值。在 cuSolver 参考手册中它说:

This function computes the LU factorization of a m×n matrix PA = LU where A is a m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit diagonal, and U is an upper triangular matrix. If LU factorization failed, i.e. matrix A(U) is singular, The output parameter devInfo=i indicates U(i,i) = 0.

在下面的代码中,我放置了相同的矩阵,因此 运行 周围没有奇异矩阵。

这是完整的代码; main() cuda 代码的模式是重复的:定义主机变量,cudaMemcpy 它们到设备,使用 cuda 函数在设备上执行它们,cudaMemcpy 它们回到主机,然后继续串行代码直到你重复。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>

#include <cuda_runtime.h>

#include "cublas_v2.h"
#include "cusolverDn.h"
#include "helper_cuda.h"

#include "helper_cusolver.h"

#ifndef MAX
    #define MAX(a,b) (a > b) ? a : b
#endif

 void linearSolverLU(
    cusolverDnHandle_t handle,
    int n,
    const double *Acopy,
    int lda,
    const double *b,
    double *x)
{
    int bufferSize = 0;
    int *info = NULL;
    double *buffer = NULL;
    double *A = NULL;
    int *ipiv = NULL; // pivoting sequence
    int h_info = 0;
    double start, stop;
    double time_solve;

    checkCudaErrors(cusolverDnDgetrf_bufferSize(handle, n, n,(double*)Acopy, lda, &bufferSize));

checkCudaErrors(cudaMalloc(&info, sizeof(int)));
checkCudaErrors(cudaMalloc(&buffer, sizeof(double)*bufferSize));
checkCudaErrors(cudaMalloc(&A, sizeof(double)*lda*n));
checkCudaErrors(cudaMalloc(&ipiv, sizeof(int)*n));


// prepare a copy of A because getrf will overwrite A with L
checkCudaErrors(cudaMemcpy(A, Acopy, sizeof(double)*lda*n, cudaMemcpyDeviceToDevice));
checkCudaErrors(cudaMemset(info, 0, sizeof(int)));

start = second();

checkCudaErrors(cusolverDnDgetrf(handle, n, n, A, lda, buffer, ipiv, info));
checkCudaErrors(cudaMemcpy(&h_info, info, sizeof(int), cudaMemcpyDeviceToHost));

if ( 0 != h_info ){
    fprintf(stderr, "Error: LU factorization failed\n");
printf("INFO_VALUE = %d\n",h_info);
}

checkCudaErrors(cudaMemcpy(x, b, sizeof(double)*n, cudaMemcpyDeviceToDevice));
checkCudaErrors(cusolverDnDgetrs(handle, CUBLAS_OP_N, n, 1, A, lda, ipiv, x, n, info));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();

time_solve = stop - start;
fprintf (stdout, "timing: LU = %10.6f sec\n", time_solve);

if (info  ) { checkCudaErrors(cudaFree(info  )); }
if (buffer) { checkCudaErrors(cudaFree(buffer)); }
if (A     ) { checkCudaErrors(cudaFree(A)); }
if (ipiv  ) { checkCudaErrors(cudaFree(ipiv));}

}

//int main (int argc, char *argv[]) !!!
int main(void)
{
    cusolverDnHandle_t handle = NULL;
    cublasHandle_t cublasHandle = NULL; // used in residual evaluation
    cudaStream_t stream = NULL;

    int rowsA = 3; // number of rows of A
    int colsA = 3; // number of columns of A
    int lda = MAX(colsA, rowsA); // leading dimension in dense matrix

    double *h_A = NULL; // dense matrix
    double *h_x = NULL; // a copy of d_x
    double *h_b = NULL; // b = ones(m,1)
    double *h_r = NULL; // r = b - A*x, a copy of d_r

    double *d_A = NULL; // a copy of h_A
    double *d_x = NULL; // x = A \ b
    double *d_b = NULL; // a copy of h_b
    double *d_r = NULL; // r = b - A*x

    // the constants are used in residual evaluation, r = b - A*x
    const double minus_one = -1.0;
    const double one = 1.0;

    double x_inf = 0.0;
    double r_inf = 0.0;
    double A_inf = 0.0;
    int errors = 0;

    int i, j, col, row, k;

    h_A = (double*)malloc(sizeof(double)*lda*colsA);
    h_x = (double*)malloc(sizeof(double)*colsA);
    h_b = (double*)malloc(sizeof(double)*rowsA);
    h_r = (double*)malloc(sizeof(double)*rowsA);
    assert(NULL != h_A);
    assert(NULL != h_x);
    assert(NULL != h_b);
    assert(NULL != h_r);

    memset(h_A, 0., sizeof(double)*lda*colsA);

    printf("step 1: set matrix (A) and right hand side vector (b)\n");

    double mat[9] = {1.,0.,0.,0.,1.,0.,0.,0.,1.};
    double bb[3] = {1., 1., 1.}; //RANDOM MATRICES 4 TESTING

    for( row =0; row < rowsA ; row++ )
    {

        for( col = 0; col < colsA ; col++ )
        {
            h_A[row*lda + col] = mat[row];
        }
    }

    for( k = 0; k < rowsA; k++ ){
    h_b[k] = bb[k];
    }

    checkCudaErrors(cusolverDnCreate(&handle));
    checkCudaErrors(cublasCreate(&cublasHandle));
    checkCudaErrors(cudaStreamCreate(&stream));

    checkCudaErrors(cusolverDnSetStream(handle, stream));
    checkCudaErrors(cublasSetStream(cublasHandle, stream));


    checkCudaErrors(cudaMalloc((void **)&d_A, sizeof(double)*lda*colsA));
    checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double)*colsA));
    checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double)*rowsA));
    checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double)*rowsA));

    printf("step 2: prepare data on device\n");
    checkCudaErrors(cudaMemcpy(d_A, h_A, sizeof(double)*lda*colsA, cudaMemcpyHostToDevice));
    checkCudaErrors(cudaMemcpy(d_b, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice));

    printf("step 3: solve A*x = b \n");

    linearSolverLU(handle, rowsA, d_A, lda, d_b, d_x);

    printf("step 4: evaluate residual\n");
    checkCudaErrors(cudaMemcpy(d_r, d_b, sizeof(double)*rowsA, cudaMemcpyDeviceToDevice));

    // r = b - A*x
    checkCudaErrors(cublasDgemm_v2(
        cublasHandle,
        CUBLAS_OP_N,
        CUBLAS_OP_N,
        rowsA,
        1,
        colsA,
        &minus_one,
        d_A,
        lda,
        d_x,
        rowsA,
        &one,
        d_r,
        rowsA));

    checkCudaErrors(cudaMemcpy(h_x, d_x, sizeof(double)*colsA, cudaMemcpyDeviceToHost));
    checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost));

    x_inf = vec_norminf(colsA, h_x);
    r_inf = vec_norminf(rowsA, h_r);
    A_inf = mat_norminf(rowsA, colsA, h_A, lda);

    printf("|b - A*x| = %E \n", r_inf);
    printf("|A| = %E \n", A_inf);
    printf("|x| = %E \n", x_inf);
    printf("|b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf));

    if (handle) { checkCudaErrors(cusolverDnDestroy(handle)); }
    if (cublasHandle) { checkCudaErrors(cublasDestroy(cublasHandle)); }
    if (stream) { checkCudaErrors(cudaStreamDestroy(stream)); }

    if (h_A) { free(h_A); }
    if (h_x) { free(h_x); }
    if (h_b) { free(h_b); }
    if (h_r) { free(h_r); }

    if (d_A) { checkCudaErrors(cudaFree(d_A)); }
    if (d_x) { checkCudaErrors(cudaFree(d_x)); }
    if (d_b) { checkCudaErrors(cudaFree(d_b)); }
    if (d_r) { checkCudaErrors(cudaFree(d_r)); }

    cudaDeviceReset();

    return 0;
}

就是这样。我知道这是很多东西;任何帮助,将不胜感激。 我真的不明白我对这些矩阵做错了什么。

如果我应该添加一些其他相关信息,请告诉我。

NB 在原始代码中请求扩展名为 .mtx 的外部稀疏矩阵,然后在 linearSolverLU 函数中将其转换为密集矩阵。我删除了那些东西,现在我直接尝试用密集矩阵来求解线性系统。

您提交给 cuSolver 进行因式分解的矩阵无效。该库正确地报告了矩阵条目中的错误。罪魁祸首是这段代码:

for( row =0; row < rowsA ; row++ )
{
    for( col = 0; col < colsA ; col++ )
    {
        h_A[row*lda + col] = mat[row];
    }
}

这将生成包含 { 1, 1, 1, 0, 0, 0, 0, 0, 0 }h_A,它是单数的,并且(我假设)不是您的意图。