如何更改混淆矩阵中的刻度?

How to change the ticks in a confusion matrix?

我正在使用混淆矩阵(图 A)

如何让我的 ticks 从 1 到 3 而不是 0 到 2 开始?

我尝试在 tick_marks 中添加 +1。但是不行(图B)

检查我的代码:

import itertools

cm = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
print('Confusion matrix, without normalization')
print(cm)
plt.figure()
plot_confusion_matrix(cm)


def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Oranges):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(iris.target_names)) + 1

    plt.xticks(tick_marks, rotation=45)
    plt.yticks(tick_marks)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

图 A:

图B

您应该获取 pltaxis 并更改 xtick_labels(如果您打算这样做):

import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix

# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
class_names = iris.target_names

# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)


def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Oranges):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(iris.target_names))
    plt.xticks(tick_marks, rotation=45)
    ax = plt.gca()
    ax.set_xticklabels((ax.get_xticks() +1).astype(str))
    plt.yticks(tick_marks)

    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j],
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

cm = confusion_matrix(y_test, y_pred)
np.set_printoptions(precision=2)
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
plot_confusion_matrix(cm)

plt.show()

结果:

我遇到了类似的问题:当我想为我的 类 使用自定义标签时,方框超出范围或标签被偏移,如您在此处显示的那样。

如果您有多个标签 (>7),那么您首先需要使用 plticker.MultipleLocator 将刻度频率明确设置为一个。然后你只需设置 x 和 y 刻度标签而不提及刻度(不设置 xticks 和 yticks 很重要。如果你这样做, imshow/matshow 部分会在顶部被切掉。)在plot_confusion_matrix函数。

import matplotlib.ticker as plticker

fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(cm,cmap=cmap)
fig.colorbar(cax)
loc = plticker.MultipleLocator(base=1.0)
ax.xaxis.set_major_locator(loc)
ax.yaxis.set_major_locator(loc)
ax.set_yticklabels(['']+iris.target_names)
ax.set_xticklabels(['']+iris.target_names)