Python: 以 CSV 格式计算每小时的平均值?

Python: Calculate average for each hour in CSV?

我想使用 CSV 文件计算每小时的平均值:

下面是我的数据集:

Timestamp    Temperature
9/1/2016 0:00:08    53.8
9/1/2016 0:00:38    53.8
9/1/2016 0:01:08    53.8
9/1/2016 0:01:38    53.8
9/1/2016 0:02:08    53.8
9/1/2016 0:02:38    54.1
9/1/2016 0:03:08    54.1
9/1/2016 0:03:38    54.1
9/1/2016 0:04:38    54
9/1/2016 0:05:38    54
9/1/2016 0:06:08    54
9/1/2016 0:06:38    54
9/1/2016 0:07:08    54
9/1/2016 0:07:38    54
9/1/2016 0:08:08    54.1
9/1/2016 0:08:38    54.1
9/1/2016 0:09:38    54.1
9/1/2016 0:10:32    54
9/1/2016 0:11:02    54
9/1/2016 0:11:32    54
9/1/2016 0:00:08    54
9/2/2016 0:00:20    32
9/2/2016 0:00:50    32
9/2/2016 0:01:20    32
9/2/2016 0:01:50    32
9/2/2016 0:02:20    32
9/2/2016 0:02:50    32
9/2/2016 0:03:20    32
9/2/2016 0:03:50    32
9/2/2016 0:04:20    32
9/2/2016 0:04:50    32
9/2/2016 0:05:20    32
9/2/2016 0:05:50    32
9/2/2016 0:06:20    32
9/2/2016 0:06:50    32
9/2/2016 0:07:20    32
9/2/2016 0:07:50    32

这是我计算每天平均值的代码,但我想要每小时:

from datetime import datetime
import pandas
def same_day(date_string): # Remove year
return datetime.strptime(date_string, "%m/%d/%Y %H:%M%S").strftime(%m%d')

df = pandas.read_csv('/home/kk/Desktop/cal_Avg.csv',index_col=0,usecols=[0, 1], names=['Timestamp', 'Discharge'],converters={'Timestamp': same_day})

print(df.groupby(level=0).mean())

我想要的输出是这样的:

Timestamp              Temp          *        Avg
9/1/2016 0:00:08    53.8
9/1/2016 0:00:38    53.8    ?avg for this hour
9/1/2016 0:01:08    53.8
9/1/2016 0:01:38    53.8    ?avg for this hour
9/1/2016 0:02:08    53.8
9/1/2016 0:02:38    54.1

现在我想要特定时间的平均值,最小值

期望的输出:

这里我只打印日期 01-09-2016 和 02-09-16 的 5 小时输出

010900              54.362727         45.497273
010901              54.723276         45.068103
010902              54.746847         45.370270
010903              54.833913         44.931304
010904              54.971053         44.835088
010905              55.519444         44.459259
020901              31.742553         55.640426
020902              31.495556         55.655556
020903              31.304348         55.442609
020904              31.200000         55.437273
020905              31.294382         55.442697

具体日期还有具体时间? 我该如何存档?

我想你首先需要 read_csv 和参数 index_col=[0] 来读取第一列到 indexparse_dates=[0] 来解析第一列到 DatetimeIndex:

df = pd.read_csv('filename', index_col=[0], parse_dates=[0],, usecols=[0,1])
print (df)
                     Temperature
Timestamp                       
2016-09-01 00:00:08         53.8
2016-09-01 00:00:38         53.8
2016-09-01 00:01:08         53.8
2016-09-01 00:01:38         53.8
2016-09-01 00:02:08         53.8
2016-09-01 00:02:38         54.1
2016-09-01 00:03:08         54.1
...
...

然后使用resample by hours and aggregate Resampler.mean,但是在DatetimeIndex中缺少数据得到NaN

print (df.resample('H').mean())
                     Temperature
Timestamp                       
2016-09-01 00:00:00    53.980952
2016-09-01 01:00:00          NaN
2016-09-01 02:00:00          NaN
2016-09-01 03:00:00          NaN
2016-09-01 04:00:00          NaN
2016-09-01 05:00:00          NaN
2016-09-01 06:00:00          NaN
2016-09-01 07:00:00          NaN
2016-09-01 08:00:00          NaN
2016-09-01 09:00:00          NaN
2016-09-01 10:00:00          NaN
2016-09-01 11:00:00          NaN
2016-09-01 12:00:00          NaN
2016-09-01 13:00:00          NaN
2016-09-01 14:00:00          NaN
2016-09-01 15:00:00          NaN
2016-09-01 16:00:00          NaN
2016-09-01 17:00:00          NaN
2016-09-01 18:00:00          NaN
2016-09-01 19:00:00          NaN
2016-09-01 20:00:00          NaN
2016-09-01 21:00:00          NaN
2016-09-01 22:00:00          NaN
2016-09-01 23:00:00          NaN
2016-09-02 00:00:00    32.000000

另一种解决方案是删除 minutesseconds 通过转换为 hoursgroupby array:

print (df.index.values.astype('<M8[h]'))
['2016-09-01T00' '2016-09-01T00' '2016-09-01T00' '2016-09-01T00'
 '2016-09-01T00' '2016-09-01T00' '2016-09-01T00' '2016-09-01T00'
 '2016-09-01T00' '2016-09-01T00' '2016-09-01T00' '2016-09-01T00'
 '2016-09-01T00' '2016-09-01T00' '2016-09-01T00' '2016-09-01T00'
 '2016-09-01T00' '2016-09-01T00' '2016-09-01T00' '2016-09-01T00'
 '2016-09-01T00' '2016-09-02T00' '2016-09-02T00' '2016-09-02T00'
 '2016-09-02T00' '2016-09-02T00' '2016-09-02T00' '2016-09-02T00'
 '2016-09-02T00' '2016-09-02T00' '2016-09-02T00' '2016-09-02T00'
 '2016-09-02T00' '2016-09-02T00' '2016-09-02T00' '2016-09-02T00'
 '2016-09-02T00']

print (df.groupby([df.index.values.astype('<M8[h]')]).mean())
            Temperature
2016-09-01    53.980952
2016-09-02    32.000000

此外,如果需要按月、日和小时进行平均,则可以 groupbyDatetimeIndex.strftime:

print (df.index.strftime('%m%d%H'))
['090100' '090100' '090100' '090100' '090100' '090100' '090100' '090100'
 '090100' '090100' '090100' '090100' '090100' '090100' '090100' '090100'
 '090100' '090100' '090100' '090100' '090100' '090200' '090200' '090200'
 '090200' '090200' '090200' '090200' '090200' '090200' '090200' '090200'
 '090200' '090200' '090200' '090200' '090200']

print (df.groupby([df.index.strftime('%m%d%H')]).mean())
        Temperature
090100    53.980952
090200    32.000000

或者如果需要仅按小时 groupbyDatetimeIndex.hour:

print (df.index.hour)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

print (df.groupby([df.index.hour]).mean())
   Temperature
0    44.475676

我会首先定义一个新列 hour 以提高可读性,然后 groupBy

df = pd.DataFrame.from_csv('/home/kk/Desktop/cal_Avg.csv',index_col=None)
df['hour']=df['Timestamp'].apply(lambda s:s[:-3])
df[['hour','Temprature']].groupBy('hour').mean()