R:data.table 按组计算多个变量的加权均值,每个变量具有多个权重变量
R: data.table compute weighted means of multiple variables with multiple weight variables each, by group
我对 data.table
还是个新手。我的问题类似于 this one and this one。不同之处在于我想按组计算多个变量的加权均值,但每个均值使用多个权重。
考虑以下data.table
(实际要大得多):
library(data.table)
set.seed(123456)
mydata <- data.table(CLID = rep("CNK", 10),
ITNUM = rep(c("First", "Second", "First", "First", "Second"), 2),
SATS = rep(c("Always", "Amost always", "Sometimes", "Never", "Always"), 2),
ASSETS = rep(c("0-10", "11-25", "26-100", "101-200", "MORE THAN 200"), 2),
AVGVALUE1 = rnorm(10, 10, 2),
AVGVALUE2 = rnorm(10, 10, 2),
WGT1 = rnorm(10, 3, 1),
WGT2 = rnorm(10, 3, 1),
WGT3 = rnorm(10, 3, 1))
#I set the key of the table to the variables I want to group by,
#so the output is sorted
setkeyv(mydata, c("CLID", "ITNUM", "SATS", "ASSETS"))
我想要实现的是按 ITNUM
、SATS
定义的组计算 AVGVALUE1
和 AVGVALUE2
(可能还有更多变量)的加权平均值ASSETS
使用每个权重变量 WGT1
、WGT2
、WGT3
(可能还有更多)。因此,对于我想要计算加权平均值的每个变量,我将按组(或任何权重数)获得三个加权平均值。
我可以分别为每个变量做,例如:
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.var <- "AVGVALUE1"
split.vars <- c("ITNUM", "SATS", "ASSETS")
mydata[ , Map(f = weighted.mean, x = .(get(avg.var)), w = mget(all.weights),
na.rm = TRUE), by = c(key(mydata)[1], split.vars)]
我在 by
中添加了第一个键变量,尽管它是一个常量,因为我想将它作为输出中的一列。我得到:
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.66824 11.66819 11.66829
2: CNK First Never 101-200 11.37378 12.21008 11.60182
3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330
4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786
5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458
然而,对于实际的 data.table
,我有更多列来计算加权均值(以及要使用的更多权重),逐一计算会很麻烦.我想象的是一个函数,其中每个变量(AVGVALUE1
、AVGVALUE2
等)的平均值是用每个权重变量(WGT1
、WGT2
计算的, WGT3
等等)并且计算加权平均值的每个变量的输出被添加到列表中。我想列表是最好的选择,因为如果所有估计都在同一个输出中,列数可能是无穷无尽的。所以像这样:
[[1]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.66824 11.66819 11.66829
2: CNK First Never 101-200 11.37378 12.21008 11.60182
3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330
4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786
5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458
[[2]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 9.132899 9.060045 9.197005
2: CNK First Never 101-200 12.896584 13.278680 13.000772
3: CNK First Sometimes 26-100 10.972260 11.215390 10.828431
4: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586
5: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
到目前为止我尝试了什么:
使用lapply
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.vars <- c("AVGVALUE1", "AVGVALUE2")
split.vars <- c("ITNUM", "SATS", "ASSETS")
lapply(mydata, function(i) {
mydata[ , Map(f = weighted.mean, x = mget(avg.vars)[i], w = mget(all.weights),
na.rm = TRUE), by = c(key(mydata)[1], split.vars)]
})
Error in weighted.mean.default(x = dots[[1L]][[1L]], w = dots[[2L]][[1L]], :
'x' and 'w' must have the same length
使用mapply
myfun <- function(data, spl.v, avg.v, wgts) {
data[ , Map(f = weighted.mean, x = mget(avg.v), w = mget(all.weights),
na.rm = TRUE), by = c(key(data)[1], spl.v)]
}
mapply(FUN = myfun, data = mydata, spl.v = split.vars, avg.v = avg.vars,
wgts = all.weights)
Error: value for ‘AVGVALUE2’ not found
我试图将 mget(avg.v)
包装为列表 - .(mget(avg.v))
,但随后出现另一个错误:
Error in mapply(FUN = f, ..., SIMPLIFY = FALSE) :
could not find function "."
有人可以帮忙吗?
我。 lapply
解决方案
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.vars <- c("AVGVALUE1", "AVGVALUE2")
split.vars <- c("ITNUM", "SATS", "ASSETS")
myfun <- function(avg.vars){
tmp <-
mydata[ , Map(f = weighted.mean,
x = .(get(avg.vars)),
w = mget(all.weights),
na.rm = TRUE),
by = c(key(mydata)[1], split.vars)]
return(tmp) # totally optional, a habit from using C and Java
}
lapply(avg.vars, myfun)
优点:
- 使用 *apply
- 避免循环
- 比一个一个地做要快得多
缺点:
- Returns 一个列表
[[1]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.66824 11.66819 11.66829
2: CNK First Never 101-200 11.37378 12.21008 11.60182
3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330
4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786
5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458
[[2]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 9.132899 9.060045 9.197005
2: CNK First Never 101-200 12.896584 13.278680 13.000772
3: CNK First Sometimes 26-100 10.972260 11.215390 10.828431
4: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586
5: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
二. for
循环解决
在 avg.vars
有 2 个值的示例中使用简单的 for
循环:
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.vars <- c("AVGVALUE1", "AVGVALUE2")
split.vars <- c("ITNUM", "SATS", "ASSETS")
result <- data.frame(matrix(nrow=0,ncol=7))
for(i in avg.vars){
tmp <-
mydata[ , Map(f = weighted.mean,
x = .(get(i)),
w = mget(all.weights),
na.rm = TRUE),
by = c(key(mydata)[1], split.vars)]
result <- rbind(result,tmp,use.names=F)
}
colnames(result) <- c("CLID", "ITNUM", "SATS", "ASSETS", "V1", "V2", "V3")
result
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.668243 11.668192 11.668287
2: CNK First Never 101-200 11.373780 12.210083 11.601819
3: CNK First Sometimes 26-100 12.430039 13.134499 12.013299
4: CNK Second Always MORE THAN 200 12.322651 11.816135 12.567860
5: CNK Second Amost always 11-25 10.765557 11.346688 10.524583
6: CNK First Always 0-10 9.132899 9.060045 9.197005
7: CNK First Never 101-200 12.896584 13.278680 13.000772
8: CNK First Sometimes 26-100 10.972260 11.215390 10.828431
9: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586
10: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
优点:
- 示例中立即完成
- 在没有额外数据的情况下扩展到任意数量的列manipulation/coding
- 将比一个一个地节省大量时间
- Returns不错
data.table
- 如果你真的想要一个列表,你可以通过将
return
初始化为一个列表 (return <- list()
),创建一个计数器变量 (n <- 1
) 然后替换 rbind
语句 return[n] <- tmp
并在循环 内递增计数器 (n <- n + 1
)
缺点:
- 如果您的数据非常大(例如 > 100,000 行和数十个或更多
avg.var
值),那么任何循环或用循环编写的函数的性能都会很差
我们可以使用 outer
(对两个输入向量中值的所有组合执行函数)对向量化加权均值函数进行运算。通过在数据 table 范围内定义 outer
使用的函数,我们可以让 get
对 data.table 列求值:
wmeans = mydata[, {
f = function(X,Y) weighted.mean(get(X), get(Y));
vf = Vectorize(f);
outer(avg.var, all.weights, vf)},
by = split.vars]
这会将所有方法放入一个列中(即 'long' 格式)。我们还可以添加更多列来指定每个 value/weight 组合指的是什么:
wmeans[, mean.v := expand.grid(avg.var, all.weights)[,1]]
wmeans[, mean.w := expand.grid(avg.var, all.weights)[,2]]
head(wmeans)
# ITNUM SATS ASSETS V1 mean.v mean.w
# 1: First Always 0-10 11.668243 AVGVALUE1 WGT1
# 2: First Always 0-10 9.132899 AVGVALUE2 WGT1
# 3: First Always 0-10 11.668192 AVGVALUE1 WGT2
# 4: First Always 0-10 9.060045 AVGVALUE2 WGT2
# 5: First Always 0-10 11.668287 AVGVALUE1 WGT3
# 6: First Always 0-10 9.197005 AVGVALUE2 WGT3
我们可以使用 dcast
将其重塑为 data.table,在 avg.var 中较长,但在 all.weights 中较宽:
wide.wmeans = dcast(wmeans, mean.v+ITNUM+SATS+ASSETS ~ mean.w, value.var = "V1")
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE1 First Always 0-10 11.668243 11.668192 11.668287
# 2: AVGVALUE1 First Never 101-200 11.373780 12.210083 11.601819
# 3: AVGVALUE1 First Sometimes 26-100 12.430039 13.134499 12.013299
# 4: AVGVALUE1 Second Always MORE THAN 200 12.322651 11.816135 12.567860
# 5: AVGVALUE1 Second Amost always 11-25 10.765557 11.346688 10.524583
# 6: AVGVALUE2 First Always 0-10 9.132899 9.060045 9.197005
# 7: AVGVALUE2 First Never 101-200 12.896584 13.278680 13.000772
# 8: AVGVALUE2 First Sometimes 26-100 10.972260 11.215390 10.828431
# 9: AVGVALUE2 Second Always MORE THAN 200 11.704404 11.611072 11.749586
#10: AVGVALUE2 Second Amost always 11-25 8.086409 8.225030 8.028928
如果您需要将其作为列表而不是 data.table,您可以使用
将其拆分
lapply(avg.var, function(x) wide.wmeans[mean.v == x])
# [[1]]
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE1 First Always 0-10 11.66824 11.66819 11.66829
# 2: AVGVALUE1 First Never 101-200 11.37378 12.21008 11.60182
# 3: AVGVALUE1 First Sometimes 26-100 12.43004 13.13450 12.01330
# 4: AVGVALUE1 Second Always MORE THAN 200 12.32265 11.81613 12.56786
# 5: AVGVALUE1 Second Amost always 11-25 10.76556 11.34669 10.52458
#
# [[2]]
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE2 First Always 0-10 9.132899 9.060045 9.197005
# 2: AVGVALUE2 First Never 101-200 12.896584 13.278680 13.000772
# 3: AVGVALUE2 First Sometimes 26-100 10.972260 11.215390 10.828431
# 4: AVGVALUE2 Second Always MORE THAN 200 11.704404 11.611072 11.749586
# 5: AVGVALUE2 Second Amost always 11-25 8.086409 8.225030 8.028928
我对 data.table
还是个新手。我的问题类似于 this one and this one。不同之处在于我想按组计算多个变量的加权均值,但每个均值使用多个权重。
考虑以下data.table
(实际要大得多):
library(data.table)
set.seed(123456)
mydata <- data.table(CLID = rep("CNK", 10),
ITNUM = rep(c("First", "Second", "First", "First", "Second"), 2),
SATS = rep(c("Always", "Amost always", "Sometimes", "Never", "Always"), 2),
ASSETS = rep(c("0-10", "11-25", "26-100", "101-200", "MORE THAN 200"), 2),
AVGVALUE1 = rnorm(10, 10, 2),
AVGVALUE2 = rnorm(10, 10, 2),
WGT1 = rnorm(10, 3, 1),
WGT2 = rnorm(10, 3, 1),
WGT3 = rnorm(10, 3, 1))
#I set the key of the table to the variables I want to group by,
#so the output is sorted
setkeyv(mydata, c("CLID", "ITNUM", "SATS", "ASSETS"))
我想要实现的是按 ITNUM
、SATS
定义的组计算 AVGVALUE1
和 AVGVALUE2
(可能还有更多变量)的加权平均值ASSETS
使用每个权重变量 WGT1
、WGT2
、WGT3
(可能还有更多)。因此,对于我想要计算加权平均值的每个变量,我将按组(或任何权重数)获得三个加权平均值。
我可以分别为每个变量做,例如:
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.var <- "AVGVALUE1"
split.vars <- c("ITNUM", "SATS", "ASSETS")
mydata[ , Map(f = weighted.mean, x = .(get(avg.var)), w = mget(all.weights),
na.rm = TRUE), by = c(key(mydata)[1], split.vars)]
我在 by
中添加了第一个键变量,尽管它是一个常量,因为我想将它作为输出中的一列。我得到:
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.66824 11.66819 11.66829
2: CNK First Never 101-200 11.37378 12.21008 11.60182
3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330
4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786
5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458
然而,对于实际的 data.table
,我有更多列来计算加权均值(以及要使用的更多权重),逐一计算会很麻烦.我想象的是一个函数,其中每个变量(AVGVALUE1
、AVGVALUE2
等)的平均值是用每个权重变量(WGT1
、WGT2
计算的, WGT3
等等)并且计算加权平均值的每个变量的输出被添加到列表中。我想列表是最好的选择,因为如果所有估计都在同一个输出中,列数可能是无穷无尽的。所以像这样:
[[1]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 11.66824 11.66819 11.66829
2: CNK First Never 101-200 11.37378 12.21008 11.60182
3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330
4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786
5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458
[[2]]
CLID ITNUM SATS ASSETS V1 V2 V3
1: CNK First Always 0-10 9.132899 9.060045 9.197005
2: CNK First Never 101-200 12.896584 13.278680 13.000772
3: CNK First Sometimes 26-100 10.972260 11.215390 10.828431
4: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586
5: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
到目前为止我尝试了什么:
使用
lapply
all.weights <- c("WGT1", "WGT2", "WGT3") avg.vars <- c("AVGVALUE1", "AVGVALUE2") split.vars <- c("ITNUM", "SATS", "ASSETS") lapply(mydata, function(i) { mydata[ , Map(f = weighted.mean, x = mget(avg.vars)[i], w = mget(all.weights), na.rm = TRUE), by = c(key(mydata)[1], split.vars)] }) Error in weighted.mean.default(x = dots[[1L]][[1L]], w = dots[[2L]][[1L]], : 'x' and 'w' must have the same length
使用
mapply
myfun <- function(data, spl.v, avg.v, wgts) { data[ , Map(f = weighted.mean, x = mget(avg.v), w = mget(all.weights), na.rm = TRUE), by = c(key(data)[1], spl.v)] } mapply(FUN = myfun, data = mydata, spl.v = split.vars, avg.v = avg.vars, wgts = all.weights) Error: value for ‘AVGVALUE2’ not found
我试图将 mget(avg.v)
包装为列表 - .(mget(avg.v))
,但随后出现另一个错误:
Error in mapply(FUN = f, ..., SIMPLIFY = FALSE) :
could not find function "."
有人可以帮忙吗?
我。 lapply
解决方案
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.vars <- c("AVGVALUE1", "AVGVALUE2")
split.vars <- c("ITNUM", "SATS", "ASSETS")
myfun <- function(avg.vars){
tmp <-
mydata[ , Map(f = weighted.mean,
x = .(get(avg.vars)),
w = mget(all.weights),
na.rm = TRUE),
by = c(key(mydata)[1], split.vars)]
return(tmp) # totally optional, a habit from using C and Java
}
lapply(avg.vars, myfun)
优点:
- 使用 *apply
- 避免循环
- 比一个一个地做要快得多
缺点:
- Returns 一个列表
[[1]] CLID ITNUM SATS ASSETS V1 V2 V3 1: CNK First Always 0-10 11.66824 11.66819 11.66829 2: CNK First Never 101-200 11.37378 12.21008 11.60182 3: CNK First Sometimes 26-100 12.43004 13.13450 12.01330 4: CNK Second Always MORE THAN 200 12.32265 11.81613 12.56786 5: CNK Second Amost always 11-25 10.76556 11.34669 10.52458 [[2]] CLID ITNUM SATS ASSETS V1 V2 V3 1: CNK First Always 0-10 9.132899 9.060045 9.197005 2: CNK First Never 101-200 12.896584 13.278680 13.000772 3: CNK First Sometimes 26-100 10.972260 11.215390 10.828431 4: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586 5: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
二. for
循环解决
在 avg.vars
有 2 个值的示例中使用简单的 for
循环:
all.weights <- c("WGT1", "WGT2", "WGT3")
avg.vars <- c("AVGVALUE1", "AVGVALUE2")
split.vars <- c("ITNUM", "SATS", "ASSETS")
result <- data.frame(matrix(nrow=0,ncol=7))
for(i in avg.vars){
tmp <-
mydata[ , Map(f = weighted.mean,
x = .(get(i)),
w = mget(all.weights),
na.rm = TRUE),
by = c(key(mydata)[1], split.vars)]
result <- rbind(result,tmp,use.names=F)
}
colnames(result) <- c("CLID", "ITNUM", "SATS", "ASSETS", "V1", "V2", "V3")
result
CLID ITNUM SATS ASSETS V1 V2 V3 1: CNK First Always 0-10 11.668243 11.668192 11.668287 2: CNK First Never 101-200 11.373780 12.210083 11.601819 3: CNK First Sometimes 26-100 12.430039 13.134499 12.013299 4: CNK Second Always MORE THAN 200 12.322651 11.816135 12.567860 5: CNK Second Amost always 11-25 10.765557 11.346688 10.524583 6: CNK First Always 0-10 9.132899 9.060045 9.197005 7: CNK First Never 101-200 12.896584 13.278680 13.000772 8: CNK First Sometimes 26-100 10.972260 11.215390 10.828431 9: CNK Second Always MORE THAN 200 11.704404 11.611072 11.749586 10: CNK Second Amost always 11-25 8.086409 8.225030 8.028928
优点:
- 示例中立即完成
- 在没有额外数据的情况下扩展到任意数量的列manipulation/coding
- 将比一个一个地节省大量时间
- Returns不错
data.table
- 如果你真的想要一个列表,你可以通过将
return
初始化为一个列表 (return <- list()
),创建一个计数器变量 (n <- 1
) 然后替换rbind
语句return[n] <- tmp
并在循环 内递增计数器 (
n <- n + 1
)
缺点:
- 如果您的数据非常大(例如 > 100,000 行和数十个或更多
avg.var
值),那么任何循环或用循环编写的函数的性能都会很差
我们可以使用 outer
(对两个输入向量中值的所有组合执行函数)对向量化加权均值函数进行运算。通过在数据 table 范围内定义 outer
使用的函数,我们可以让 get
对 data.table 列求值:
wmeans = mydata[, {
f = function(X,Y) weighted.mean(get(X), get(Y));
vf = Vectorize(f);
outer(avg.var, all.weights, vf)},
by = split.vars]
这会将所有方法放入一个列中(即 'long' 格式)。我们还可以添加更多列来指定每个 value/weight 组合指的是什么:
wmeans[, mean.v := expand.grid(avg.var, all.weights)[,1]]
wmeans[, mean.w := expand.grid(avg.var, all.weights)[,2]]
head(wmeans)
# ITNUM SATS ASSETS V1 mean.v mean.w
# 1: First Always 0-10 11.668243 AVGVALUE1 WGT1
# 2: First Always 0-10 9.132899 AVGVALUE2 WGT1
# 3: First Always 0-10 11.668192 AVGVALUE1 WGT2
# 4: First Always 0-10 9.060045 AVGVALUE2 WGT2
# 5: First Always 0-10 11.668287 AVGVALUE1 WGT3
# 6: First Always 0-10 9.197005 AVGVALUE2 WGT3
我们可以使用 dcast
将其重塑为 data.table,在 avg.var 中较长,但在 all.weights 中较宽:
wide.wmeans = dcast(wmeans, mean.v+ITNUM+SATS+ASSETS ~ mean.w, value.var = "V1")
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE1 First Always 0-10 11.668243 11.668192 11.668287
# 2: AVGVALUE1 First Never 101-200 11.373780 12.210083 11.601819
# 3: AVGVALUE1 First Sometimes 26-100 12.430039 13.134499 12.013299
# 4: AVGVALUE1 Second Always MORE THAN 200 12.322651 11.816135 12.567860
# 5: AVGVALUE1 Second Amost always 11-25 10.765557 11.346688 10.524583
# 6: AVGVALUE2 First Always 0-10 9.132899 9.060045 9.197005
# 7: AVGVALUE2 First Never 101-200 12.896584 13.278680 13.000772
# 8: AVGVALUE2 First Sometimes 26-100 10.972260 11.215390 10.828431
# 9: AVGVALUE2 Second Always MORE THAN 200 11.704404 11.611072 11.749586
#10: AVGVALUE2 Second Amost always 11-25 8.086409 8.225030 8.028928
如果您需要将其作为列表而不是 data.table,您可以使用
将其拆分lapply(avg.var, function(x) wide.wmeans[mean.v == x])
# [[1]]
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE1 First Always 0-10 11.66824 11.66819 11.66829
# 2: AVGVALUE1 First Never 101-200 11.37378 12.21008 11.60182
# 3: AVGVALUE1 First Sometimes 26-100 12.43004 13.13450 12.01330
# 4: AVGVALUE1 Second Always MORE THAN 200 12.32265 11.81613 12.56786
# 5: AVGVALUE1 Second Amost always 11-25 10.76556 11.34669 10.52458
#
# [[2]]
# mean.v ITNUM SATS ASSETS WGT1 WGT2 WGT3
# 1: AVGVALUE2 First Always 0-10 9.132899 9.060045 9.197005
# 2: AVGVALUE2 First Never 101-200 12.896584 13.278680 13.000772
# 3: AVGVALUE2 First Sometimes 26-100 10.972260 11.215390 10.828431
# 4: AVGVALUE2 Second Always MORE THAN 200 11.704404 11.611072 11.749586
# 5: AVGVALUE2 Second Amost always 11-25 8.086409 8.225030 8.028928