列(以索引格式)到数据框?
column (in index format) to dataframe?
我的数据框中有一列格式类似于索引:
0 [u'Basketball', u'Swimming', u'Gym']
1 [u'Gym', u'Soccer', u'Football']
2 [u'Ballet', u'Basketball', u'Volleyball']
有没有一种简单的方法让我清理它(删除 u 和方括号)然后用 (',') 将它们分开,以便将运动分为三列?
考虑s
s = pd.Series([
"[u'Basketball', 'Swimming', 'Gym']",
"[u'Gym', u'Soccer', u'Football']",
"[u'Ballet', u'Basketball', u'Volleyball']"
])
s
0 [u'Basketball', 'Swimming', 'Gym']
1 [u'Gym', u'Soccer', u'Football']
2 [u'Ballet', u'Basketball', u'Volleyball']
dtype: object
最快的方法是 apply
eval
s.apply(eval)
0 [Basketball, Swimming, Gym]
1 [Gym, Soccer, Football]
2 [Ballet, Basketball, Volleyball]
dtype: object
获取数据帧
s.apply(eval).apply(pd.Series)
我的数据框中有一列格式类似于索引:
0 [u'Basketball', u'Swimming', u'Gym']
1 [u'Gym', u'Soccer', u'Football']
2 [u'Ballet', u'Basketball', u'Volleyball']
有没有一种简单的方法让我清理它(删除 u 和方括号)然后用 (',') 将它们分开,以便将运动分为三列?
考虑s
s = pd.Series([
"[u'Basketball', 'Swimming', 'Gym']",
"[u'Gym', u'Soccer', u'Football']",
"[u'Ballet', u'Basketball', u'Volleyball']"
])
s
0 [u'Basketball', 'Swimming', 'Gym']
1 [u'Gym', u'Soccer', u'Football']
2 [u'Ballet', u'Basketball', u'Volleyball']
dtype: object
最快的方法是 apply
eval
s.apply(eval)
0 [Basketball, Swimming, Gym]
1 [Gym, Soccer, Football]
2 [Ballet, Basketball, Volleyball]
dtype: object
获取数据帧
s.apply(eval).apply(pd.Series)