如何使用 SymPy 找到给定一阶导数的 n 阶导数?
How to find the nth derivative given the first derivative with SymPy?
给定一些 f 和微分方程 x'(t) = f(x(t)), 我如何计算 x(n)(t) x(t)?
例如,给定 f(x(t)) = sin(x(t)),
我想获得 x(3)(t) = (cos( x(t))2 − sin(x(t))2) sin(x(t)).
到目前为止我已经试过了
>>> from sympy import diff, sin
>>> from sympy.abc import x, t
>>> diff(sin(x(t)), t, 2)
这给了我
-sin(x(t))*Derivative(x(t), t)**2 + cos(x(t))*Derivative(x(t), t, t)
但我不确定如何告诉 SymPy Derivative(x(t), t)
是什么,并让它自动计算出 Derivative(x(t), t, t)
,等等。
答案:
根据我收到的以下答案,这是我的最终解决方案:
def diff(x_derivs_known, t, k, simplify=False):
try: n = len(x_derivs_known)
except TypeError: n = None
if n is None:
result = sympy.diff(x_derivs_known, t, k)
if simplify: result = result.simplify()
elif k < n:
result = x_derivs_known[k]
else:
i = n - 1
result = x_derivs_known[i]
while i < k:
result = result.diff(t)
j = len(x_derivs_known)
x0 = None
while j > 1:
j -= 1
result = result.subs(sympy.Derivative(x_derivs_known[0], t, j), x_derivs_known[j])
i += 1
if simplify: result = result.simplify()
return result
示例:
>>> diff((x(t), sympy.sin(x(t))), t, 3, True)
sin(x(t))*cos(2*x(t))
声明 f
并使用替换:
>>> f = diff(x(t))
>>> diff(sin(x(t)), t, 2).subs(f, sin(x(t)))
-sin(x(t))**3 + cos(x(t))*Derivative(sin(x(t)), t)
这是一种方法,returns所有导数的列表达到 n
阶
import sympy as sp
x = sp.Function('x')
t = sp.symbols('t')
f = lambda x: x**2 #sp.exp, sp.sin
n = 4 #3, 4, 5
deriv_list = [x(t), f(x(t))] # list of derivatives [x(t), x'(t), x''(t),...]
for i in range(1,n):
df_i = deriv_list[-1].diff(t).replace(sp.Derivative,lambda *args: f(x(t)))
deriv_list.append(df_i)
print(deriv_list)
[x(t), x(t)**2, 2*x(t)**3, 6*x(t)**4, 24*x(t)**5]
用f=sp.sin
吧returns
[x(t), sin(x(t)), sin(x(t))*cos(x(t)), -sin(x(t))**3 + sin(x(t))*cos(x(t))**2, -5*sin(x(t))**3*cos(x(t)) + sin(x(t))*cos(x(t))**3]
编辑:计算n
阶导数的递归函数:
def der_xt(f, n):
if n==1:
return f(x(t))
else:
return der_xt(f,n-1).diff(t).replace(sp.Derivative,lambda *args: f(x(t)))
print(der_xt(sp.sin,3))
-sin(x(t))**3 + sin(x(t))*cos(x(t))**2
给定一些 f 和微分方程 x'(t) = f(x(t)), 我如何计算 x(n)(t) x(t)?
例如,给定 f(x(t)) = sin(x(t)), 我想获得 x(3)(t) = (cos( x(t))2 − sin(x(t))2) sin(x(t)).
到目前为止我已经试过了
>>> from sympy import diff, sin
>>> from sympy.abc import x, t
>>> diff(sin(x(t)), t, 2)
这给了我
-sin(x(t))*Derivative(x(t), t)**2 + cos(x(t))*Derivative(x(t), t, t)
但我不确定如何告诉 SymPy Derivative(x(t), t)
是什么,并让它自动计算出 Derivative(x(t), t, t)
,等等。
答案:
根据我收到的以下答案,这是我的最终解决方案:
def diff(x_derivs_known, t, k, simplify=False):
try: n = len(x_derivs_known)
except TypeError: n = None
if n is None:
result = sympy.diff(x_derivs_known, t, k)
if simplify: result = result.simplify()
elif k < n:
result = x_derivs_known[k]
else:
i = n - 1
result = x_derivs_known[i]
while i < k:
result = result.diff(t)
j = len(x_derivs_known)
x0 = None
while j > 1:
j -= 1
result = result.subs(sympy.Derivative(x_derivs_known[0], t, j), x_derivs_known[j])
i += 1
if simplify: result = result.simplify()
return result
示例:
>>> diff((x(t), sympy.sin(x(t))), t, 3, True)
sin(x(t))*cos(2*x(t))
声明 f
并使用替换:
>>> f = diff(x(t))
>>> diff(sin(x(t)), t, 2).subs(f, sin(x(t)))
-sin(x(t))**3 + cos(x(t))*Derivative(sin(x(t)), t)
这是一种方法,returns所有导数的列表达到 n
阶
import sympy as sp
x = sp.Function('x')
t = sp.symbols('t')
f = lambda x: x**2 #sp.exp, sp.sin
n = 4 #3, 4, 5
deriv_list = [x(t), f(x(t))] # list of derivatives [x(t), x'(t), x''(t),...]
for i in range(1,n):
df_i = deriv_list[-1].diff(t).replace(sp.Derivative,lambda *args: f(x(t)))
deriv_list.append(df_i)
print(deriv_list)
[x(t), x(t)**2, 2*x(t)**3, 6*x(t)**4, 24*x(t)**5]
用f=sp.sin
吧returns
[x(t), sin(x(t)), sin(x(t))*cos(x(t)), -sin(x(t))**3 + sin(x(t))*cos(x(t))**2, -5*sin(x(t))**3*cos(x(t)) + sin(x(t))*cos(x(t))**3]
编辑:计算n
阶导数的递归函数:
def der_xt(f, n):
if n==1:
return f(x(t))
else:
return der_xt(f,n-1).diff(t).replace(sp.Derivative,lambda *args: f(x(t)))
print(der_xt(sp.sin,3))
-sin(x(t))**3 + sin(x(t))*cos(x(t))**2