访问结构字段给出地址而不是值
Accessing struct field gives address rather than value
我有一些嵌入式c 代码,它使用void 指针和指针算法来实现通用链表。我正在使用列表来存储类型 stopwatch_t
的结构。我遇到的问题是,当我将项目从列表中拉出并将它们从 void
指针转换为 stopwatch_t
指针时,它们的行为并不像预期的那样。当我尝试访问结构的字段时,我得到的是地址而不是值。有关更多详细信息,请参阅下面代码中的最后一条注释。
链表的完整代码;
h 文件
typedef uint16_t list_index_t;
typedef struct
{
void * p_values;
uint16_t * p_links;
uint16_t el_size;
uint16_t list_size;
list_index_t first;
list_index_t last;
bool empty;
} list_t;
typedef struct
{
list_t * p_list;
bool before_first;
list_index_t current;
} list_enumerator_t;
#define LIST_INIT(P_LIST, EL_SIZE, LIST_SIZE) \
do \
{ \
static uint8_t values[LIST_SIZE*EL_SIZE]; \
static uint16_t links[LIST_SIZE]; \
static list_t list; \
uint32_t err = list_init(&list, values, links, EL_SIZE, LIST_SIZE); \
APP_ERROR_CHECK(err); \
(*P_LIST) = &list; \
} while (0);
c文件
#include <string.h>
#include "compiler_abstraction.h"
#include "list.h"
static __INLINE list_index_t get_successor(list_t * p_list, list_index_t current);
static __INLINE void set_successor(list_t * p_list, list_index_t index, list_index_t successor_index);
static __INLINE list_index_t get_predecessor(list_t * p_list, list_index_t target);
static __INLINE void * get_value(list_t * p_list, list_index_t index);
uint32_t list_init( list_t * p_list,
void * p_values,
uint16_t * p_links,
uint16_t el_size,
uint16_t list_size)
{
p_list->p_values = p_values;
p_list->p_links = p_links;
p_list->el_size = el_size;
p_list->list_size = list_size;
p_list->first = 0;
p_list->last = 0;
p_list->empty = true;
// link all nodes
for (uint16_t i = 0; i < (list_size - 1); i++)
{
p_links[i] = i+1;
}
p_links[list_size-1] = 0;
return NRF_SUCCESS;
}
bool list_empty(list_t * p_list)
{
return (p_list->empty);
}
bool list_full(list_t * p_list)
{
list_index_t first = p_list->first;
list_index_t last = p_list->last;
list_index_t after_last = get_successor(p_list, last);
return (first == after_last);
}
// Precondition: !list_full(p_list)
list_index_t list_insert(list_t * p_list, void * p_value)
{
// determine where new value will go
list_index_t new_index =
p_list->empty ?
p_list->last :
get_successor(p_list, p_list->last);
// copy value into list
void * p_new_value = get_value(p_list, new_index);
memcpy(p_new_value, p_value, p_list->el_size);
// update links
p_list->last = new_index;
p_list->empty = false;
return new_index;
}
void * list_lookup(list_t * p_list, list_index_t index)
{
return get_value(p_list, index);
}
// Precondition: !list_empty(p_list)
void list_delete(list_t * p_list, list_index_t del)
{
// update empty status
// note: the only valid way to get an empty list is to delete an
// item from a list with only one item.
p_list->empty = p_list->first == p_list->last;
// delete items from beginning of list
if (p_list->first == del)
{
p_list->first = get_successor(p_list, del);
}
// delete item from end of list
else if (p_list->last == del)
{
p_list->last = get_predecessor(p_list, del);
}
// delete item from middle of list
else
{
// remove node from chain
list_index_t before_del = get_predecessor(p_list, del);
list_index_t after_del = get_successor(p_list, del);
set_successor(p_list, before_del, after_del);
// insert node back into chain after last
list_index_t after_last = get_successor(p_list, p_list->last);
set_successor(p_list, del, after_last);
set_successor(p_list, p_list->last, del);
}
}
static __INLINE list_index_t get_predecessor(list_t * p_list, list_index_t target)
{
// start at first populated index
list_index_t x = p_list->first;
list_index_t y = get_successor(p_list, x);
while (y != target)
{
x = y;
y = get_successor(p_list, y);
}
return x;
}
static __INLINE list_index_t get_successor(list_t * p_list, list_index_t current)
{
return (p_list->p_links)[current];
}
static __INLINE void set_successor(list_t * p_list, list_index_t index, list_index_t successor_index)
{
(p_list->p_links)[index] = successor_index;
}
static __INLINE void * get_value(list_t * p_list, list_index_t index)
{
return (void *)
((uint32_t)(p_list->p_values) + (index * p_list->el_size));
}
list_enumerator_t list_enumerate(list_t * p_list)
{
list_enumerator_t enumerator;
enumerator.before_first = true;
enumerator.p_list = p_list;
return enumerator;
}
bool enumerator_move_next(list_enumerator_t * p_enumerator)
{
bool result;
list_t * p_list = p_enumerator->p_list;
if (p_enumerator->before_first)
{
p_enumerator->current = p_list->first;
p_enumerator->before_first = false;
result = !list_empty(p_list);
}
else if (p_enumerator->current == p_list->last)
{
result = false;
}
else
{
p_enumerator->current = get_successor(p_list, p_enumerator->current);
result = true;
}
return result;
}
void * enumerator_current(list_enumerator_t * p_enumerator)
{
list_t * p_list = p_enumerator->p_list;
list_index_t index = p_enumerator->current;
return get_value(p_list, index);
}
秒表相关零件;
static list_t * p_slots;
typedef struct
{
uint16_t start;
uint32_t rollovers;
} stopwatch_t;
uint32_t stopwatch_init(void)
{
stopwatch_t stopwatch;
LIST_INIT(&p_slots, sizeof stopwatch, MAX_STOPWATCHES);
...
return OK;
}
stopwatch_id_t stopwatch_start(void)
{
stopwatch_t stopwatch;
stopwatch.start = timer1_now();
stopwatch.rollovers = 0;
...
stopwatch_id_t id = list_insert(p_slots, (void *)(&stopwatch));
...
return id;
}
uint64_t stopwatch_get_elapsed_time(stopwatch_id_t id)
{
...
stopwatch_t * p_stopwatch = list_lookup(p_slots, (list_index_t)id);
uint16_t start_ticks = (p_stopwatch->start);
uint32_t rollovers = (p_stopwatch->rollovers);
/* PROBLEM: variables 'start_ticks' & 'rollovers' now contain the addresses */
/* of the values I want, rather than the values themselves. */
...
}
这是我第一次使用空指针。我哪里错了?
问题与指针的使用或指针运算无关。事实证明,函数 stopwatch_get_elapsed_time(..)
的 return 表达式有错误。此错误意味着未使用变量 start_ticks
和 rollovers
。大概编译器已经意识到变量没有被使用并优化它们。
这解释了为什么在调试器中观察时变量显示奇怪的值。
我有一些嵌入式c 代码,它使用void 指针和指针算法来实现通用链表。我正在使用列表来存储类型 stopwatch_t
的结构。我遇到的问题是,当我将项目从列表中拉出并将它们从 void
指针转换为 stopwatch_t
指针时,它们的行为并不像预期的那样。当我尝试访问结构的字段时,我得到的是地址而不是值。有关更多详细信息,请参阅下面代码中的最后一条注释。
链表的完整代码;
h 文件
typedef uint16_t list_index_t;
typedef struct
{
void * p_values;
uint16_t * p_links;
uint16_t el_size;
uint16_t list_size;
list_index_t first;
list_index_t last;
bool empty;
} list_t;
typedef struct
{
list_t * p_list;
bool before_first;
list_index_t current;
} list_enumerator_t;
#define LIST_INIT(P_LIST, EL_SIZE, LIST_SIZE) \
do \
{ \
static uint8_t values[LIST_SIZE*EL_SIZE]; \
static uint16_t links[LIST_SIZE]; \
static list_t list; \
uint32_t err = list_init(&list, values, links, EL_SIZE, LIST_SIZE); \
APP_ERROR_CHECK(err); \
(*P_LIST) = &list; \
} while (0);
c文件
#include <string.h>
#include "compiler_abstraction.h"
#include "list.h"
static __INLINE list_index_t get_successor(list_t * p_list, list_index_t current);
static __INLINE void set_successor(list_t * p_list, list_index_t index, list_index_t successor_index);
static __INLINE list_index_t get_predecessor(list_t * p_list, list_index_t target);
static __INLINE void * get_value(list_t * p_list, list_index_t index);
uint32_t list_init( list_t * p_list,
void * p_values,
uint16_t * p_links,
uint16_t el_size,
uint16_t list_size)
{
p_list->p_values = p_values;
p_list->p_links = p_links;
p_list->el_size = el_size;
p_list->list_size = list_size;
p_list->first = 0;
p_list->last = 0;
p_list->empty = true;
// link all nodes
for (uint16_t i = 0; i < (list_size - 1); i++)
{
p_links[i] = i+1;
}
p_links[list_size-1] = 0;
return NRF_SUCCESS;
}
bool list_empty(list_t * p_list)
{
return (p_list->empty);
}
bool list_full(list_t * p_list)
{
list_index_t first = p_list->first;
list_index_t last = p_list->last;
list_index_t after_last = get_successor(p_list, last);
return (first == after_last);
}
// Precondition: !list_full(p_list)
list_index_t list_insert(list_t * p_list, void * p_value)
{
// determine where new value will go
list_index_t new_index =
p_list->empty ?
p_list->last :
get_successor(p_list, p_list->last);
// copy value into list
void * p_new_value = get_value(p_list, new_index);
memcpy(p_new_value, p_value, p_list->el_size);
// update links
p_list->last = new_index;
p_list->empty = false;
return new_index;
}
void * list_lookup(list_t * p_list, list_index_t index)
{
return get_value(p_list, index);
}
// Precondition: !list_empty(p_list)
void list_delete(list_t * p_list, list_index_t del)
{
// update empty status
// note: the only valid way to get an empty list is to delete an
// item from a list with only one item.
p_list->empty = p_list->first == p_list->last;
// delete items from beginning of list
if (p_list->first == del)
{
p_list->first = get_successor(p_list, del);
}
// delete item from end of list
else if (p_list->last == del)
{
p_list->last = get_predecessor(p_list, del);
}
// delete item from middle of list
else
{
// remove node from chain
list_index_t before_del = get_predecessor(p_list, del);
list_index_t after_del = get_successor(p_list, del);
set_successor(p_list, before_del, after_del);
// insert node back into chain after last
list_index_t after_last = get_successor(p_list, p_list->last);
set_successor(p_list, del, after_last);
set_successor(p_list, p_list->last, del);
}
}
static __INLINE list_index_t get_predecessor(list_t * p_list, list_index_t target)
{
// start at first populated index
list_index_t x = p_list->first;
list_index_t y = get_successor(p_list, x);
while (y != target)
{
x = y;
y = get_successor(p_list, y);
}
return x;
}
static __INLINE list_index_t get_successor(list_t * p_list, list_index_t current)
{
return (p_list->p_links)[current];
}
static __INLINE void set_successor(list_t * p_list, list_index_t index, list_index_t successor_index)
{
(p_list->p_links)[index] = successor_index;
}
static __INLINE void * get_value(list_t * p_list, list_index_t index)
{
return (void *)
((uint32_t)(p_list->p_values) + (index * p_list->el_size));
}
list_enumerator_t list_enumerate(list_t * p_list)
{
list_enumerator_t enumerator;
enumerator.before_first = true;
enumerator.p_list = p_list;
return enumerator;
}
bool enumerator_move_next(list_enumerator_t * p_enumerator)
{
bool result;
list_t * p_list = p_enumerator->p_list;
if (p_enumerator->before_first)
{
p_enumerator->current = p_list->first;
p_enumerator->before_first = false;
result = !list_empty(p_list);
}
else if (p_enumerator->current == p_list->last)
{
result = false;
}
else
{
p_enumerator->current = get_successor(p_list, p_enumerator->current);
result = true;
}
return result;
}
void * enumerator_current(list_enumerator_t * p_enumerator)
{
list_t * p_list = p_enumerator->p_list;
list_index_t index = p_enumerator->current;
return get_value(p_list, index);
}
秒表相关零件;
static list_t * p_slots;
typedef struct
{
uint16_t start;
uint32_t rollovers;
} stopwatch_t;
uint32_t stopwatch_init(void)
{
stopwatch_t stopwatch;
LIST_INIT(&p_slots, sizeof stopwatch, MAX_STOPWATCHES);
...
return OK;
}
stopwatch_id_t stopwatch_start(void)
{
stopwatch_t stopwatch;
stopwatch.start = timer1_now();
stopwatch.rollovers = 0;
...
stopwatch_id_t id = list_insert(p_slots, (void *)(&stopwatch));
...
return id;
}
uint64_t stopwatch_get_elapsed_time(stopwatch_id_t id)
{
...
stopwatch_t * p_stopwatch = list_lookup(p_slots, (list_index_t)id);
uint16_t start_ticks = (p_stopwatch->start);
uint32_t rollovers = (p_stopwatch->rollovers);
/* PROBLEM: variables 'start_ticks' & 'rollovers' now contain the addresses */
/* of the values I want, rather than the values themselves. */
...
}
这是我第一次使用空指针。我哪里错了?
问题与指针的使用或指针运算无关。事实证明,函数 stopwatch_get_elapsed_time(..)
的 return 表达式有错误。此错误意味着未使用变量 start_ticks
和 rollovers
。大概编译器已经意识到变量没有被使用并优化它们。
这解释了为什么在调试器中观察时变量显示奇怪的值。