numpy:如何从 argmax 结果中获得最大值
numpy: how to get a max from an argmax result
我有一个任意形状的 numpy 数组,例如:
a = array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
a.shape = (2, 3, 2)
最后一个轴上的 argmax 结果:
np.argmax(a, axis=-1) = array([[1, 1, 0],
[1, 0, 1]])
我想得到最大值:
np.max(a, axis=-1) = array([[ 2, 4, 8],
[ 8, 9, 12]])
但无需重新计算所有内容。我试过:
a[np.arange(len(a)), np.argmax(a, axis=-1)]
但是得到了:
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (2,) (2,3)
怎么做?二维的类似问题:numpy 2d array max/argmax
你可以使用advanced indexing
-
In [17]: a
Out[17]:
array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
In [18]: idx = a.argmax(axis=-1)
In [19]: m,n = a.shape[:2]
In [20]: a[np.arange(m)[:,None],np.arange(n),idx]
Out[20]:
array([[ 2, 4, 8],
[ 8, 9, 12]])
对于任意维数的通用 ndarray 情况,如 , we could use np.ix_
中所述,就像这样 -
shp = np.array(a.shape)
dim_idx = list(np.ix_(*[np.arange(i) for i in shp[:-1]]))
dim_idx.append(idx)
out = a[dim_idx]
对于任意形状的ndarray,你可以展平argmax索引,然后恢复正确的形状,如下:
idx = np.argmax(a, axis=-1)
flat_idx = np.arange(a.size, step=a.shape[-1]) + idx.ravel()
maximum = a.ravel()[flat_idx].reshape(*a.shape[:-1])
对于任意形状的数组,以下应该有效:)
a = np.arange(5 * 4 * 3).reshape((5,4,3))
# for last axis
argmax = a.argmax(axis=-1)
a[tuple(np.indices(a.shape[:-1])) + (argmax,)]
# for other axis (eg. axis=1)
argmax = a.argmax(axis=1)
idx = list(np.indices(a.shape[:1]+a.shape[2:]))
idx[1:1] = [argmax]
a[tuple(idx)]
或
a = np.arange(5 * 4 * 3).reshape((5,4,3))
argmax = a.argmax(axis=0)
np.choose(argmax, np.moveaxis(a, 0, 0))
argmax = a.argmax(axis=1)
np.choose(argmax, np.moveaxis(a, 1, 0))
argmax = a.argmax(axis=2)
np.choose(argmax, np.moveaxis(a, 2, 0))
argmax = a.argmax(axis=-1)
np.choose(argmax, np.moveaxis(a, -1, 0))
我有一个任意形状的 numpy 数组,例如:
a = array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
a.shape = (2, 3, 2)
最后一个轴上的 argmax 结果:
np.argmax(a, axis=-1) = array([[1, 1, 0],
[1, 0, 1]])
我想得到最大值:
np.max(a, axis=-1) = array([[ 2, 4, 8],
[ 8, 9, 12]])
但无需重新计算所有内容。我试过:
a[np.arange(len(a)), np.argmax(a, axis=-1)]
但是得到了:
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (2,) (2,3)
怎么做?二维的类似问题:numpy 2d array max/argmax
你可以使用advanced indexing
-
In [17]: a
Out[17]:
array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
In [18]: idx = a.argmax(axis=-1)
In [19]: m,n = a.shape[:2]
In [20]: a[np.arange(m)[:,None],np.arange(n),idx]
Out[20]:
array([[ 2, 4, 8],
[ 8, 9, 12]])
对于任意维数的通用 ndarray 情况,如 np.ix_
中所述,就像这样 -
shp = np.array(a.shape)
dim_idx = list(np.ix_(*[np.arange(i) for i in shp[:-1]]))
dim_idx.append(idx)
out = a[dim_idx]
对于任意形状的ndarray,你可以展平argmax索引,然后恢复正确的形状,如下:
idx = np.argmax(a, axis=-1)
flat_idx = np.arange(a.size, step=a.shape[-1]) + idx.ravel()
maximum = a.ravel()[flat_idx].reshape(*a.shape[:-1])
对于任意形状的数组,以下应该有效:)
a = np.arange(5 * 4 * 3).reshape((5,4,3))
# for last axis
argmax = a.argmax(axis=-1)
a[tuple(np.indices(a.shape[:-1])) + (argmax,)]
# for other axis (eg. axis=1)
argmax = a.argmax(axis=1)
idx = list(np.indices(a.shape[:1]+a.shape[2:]))
idx[1:1] = [argmax]
a[tuple(idx)]
或
a = np.arange(5 * 4 * 3).reshape((5,4,3))
argmax = a.argmax(axis=0)
np.choose(argmax, np.moveaxis(a, 0, 0))
argmax = a.argmax(axis=1)
np.choose(argmax, np.moveaxis(a, 1, 0))
argmax = a.argmax(axis=2)
np.choose(argmax, np.moveaxis(a, 2, 0))
argmax = a.argmax(axis=-1)
np.choose(argmax, np.moveaxis(a, -1, 0))