如何使用 igraph 为 python 绘制基于社区的图表

How to plot Community-based graph using igraph for python

我有一个图表,我使用 Louvain-Algorithm 实现从中提取社区:

clusters = g.community_multilevel( weights=None, return_levels=False)

然后我为每个社区应用不同的颜色:

new_cmap = ['#'+''.join([random.choice('0123456789abcdef') for x in range(6)]) for z in range(len(clusters))]
colors = {v: new_cmap[i] for i, c in enumerate(clusters) for v in c}
g.vs["color"] = [colors[e] for e in g.vs.indices]

最后我绘制了图表:

visual_style["layout"] = g.layout_fruchterman_reingold(weights=g.es["weight"], maxiter=1000, area=N ** 3, repulserad=N ** 3)
igraph.plot(g, **visual_style)

我得到以下结果:

谢谢。

我发现解决方案是大幅增加属于社区的边的权重(在下面的示例中是顶点数量的 3 倍):

clusters = g.community_multilevel( weights=None, return_levels=False)
member = clusters.membership
new_cmap = ['#'+''.join([random.choice('0123456789abcdef') for x in range(6)]) for z in range(len(clusters))]

vcolors = {v: new_cmap[i] for i, c in enumerate(clusters) for v in c}
g.vs["color"] = [vcolors[v] for v in g.vs.indices]

ecolors = {e.index: new_cmap[member[e.tuple[0]]] if member[e.tuple[0]]==member[e.tuple[1]] else "#e0e0e0" for e in g.es}
eweights = {e.index: (3*g.vcount()) if member[e.tuple[0]]==member[e.tuple[1]] else 0.1 for e in g.es}
g.es["weight"] = [eweights[e.index] for e in g.es]
g.es["color"] = [ecolors[e] for e in g.es.indices]

visual_style["layout"] = g.layout_fruchterman_reingold(weights=g.es["weight"], maxiter=500, area=N ** 3, repulserad=N ** 3)
igraph.plot(g, **visual_style)

我假设社区内需要 'drastically increase' 边权重是因为我的图由一些顶点组成,这些顶点代表的顶点数量不到 2%,但有超过 80% 的顶点即使它们属于不同的社区,边缘也与它们相连。在下图中,许多 社区外的边缘为浅灰色: