TensorFlow 总是在训练后收敛到所有项目的相同输出
TensorFlow always converging to same output for all items after training
这是我正在使用的代码片段:
import tensorflow as tf
import numpy as np
from PIL import Image
from os import listdir
nodes_l1 = 500
nodes_l2 = 100
nodes_l3 = 500
num_batches = 20
num_epochs = 50
# Array of file dirs
human_file_array = listdir('human/')
human_file_array = [['human/'+human_file_array[i],[1,0]] for i in range(len(human_file_array))]
cucumber_file_array = listdir('cucumber/')
cucumber_file_array = [['cucumber/'+cucumber_file_array[i],[0,1]] for i in range(len(cucumber_file_array))]
file_array_shuffled = human_file_array + cucumber_file_array
np.random.shuffle(file_array_shuffled)
htest_file_array = listdir('human_test/')
htest_file_array = [['human_test/'+htest_file_array[i],[1,0]] for i in range(len(htest_file_array))]
ctest_file_array = listdir('cucumber_test/')
ctest_file_array = [['cucumber_test/'+ctest_file_array[i],[0,1]] for i in range(len(ctest_file_array))]
test_file_array = ctest_file_array + htest_file_array
np.random.shuffle(test_file_array)
input_data = tf.placeholder('float', [None, 250*250*3]
output_data = tf.placeholder('float')
hl1_vars = {
'weight': tf.Variable(tf.random_normal([250*250*3, nodes_l1])),
'bias': tf.Variable(tf.random_normal([nodes_l1]))
}
hl2_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l1, nodes_l2])),
'bias': tf.Variable(tf.random_normal([nodes_l2]))
}
hl3_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l2, nodes_l3])),
'bias': tf.Variable(tf.random_normal([nodes_l3]))
}
output_layer_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l3, 2])),
'bias': tf.Variable(tf.random_normal([2]))
}
layer1 = tf.add(tf.matmul(input_data, hl1_vars['weight']),hl1_vars['bias'])
layer1 = tf.nn.softmax(layer1)
layer2 = tf.add(tf.matmul(layer1, hl2_vars['weight']), hl2_vars['bias'])
layer2 = tf.nn.softmax(layer2)
layer3 = tf.add(tf.matmul(layer2, hl3_vars['weight']), hl3_vars['bias'])
layer3 = tf.nn.softmax(layer3)
output = tf.add(tf.matmul(layer3, output_layer_vars['weight']), output_layer_vars['bias'])
output = tf.nn.softmax(output)
def convert_image(path):
with Image.open(path) as img:
img = img.resize((250,250))
img = img.convert('RGB')
return img
def train_network():
#prediction = output
cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(output, output_data)) # output is the prediction, output_data is key
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
for epoch in range(num_epochs):
epoch_error = 0
batch_size = int((len(file_array_shuffled)/num_batches))
for i in range(num_batches):
path_var = []
key_var = []
img_var = []
#Still Filename Batch!!
batch_file_array = file_array_shuffled[batch_size*i:(batch_size*i)+batch_size] #batch1['file&val array']['val']
for batch_val in batch_file_array:
path_var.append(batch_val[0])
key_var.append(batch_val[1])
#FROM HERE ON path_var AND key_var HAVE MATCHING INDEXES DO NOT RANDOMIZE!!!
#This section here is complicated!
for path in path_var:
img = convert_image(path)
img_var.append(np.reshape(np.array(img), 250*250*3))
#print np.shape(img_var),np.shape(key_var) #img_var is array of size (batch#, 64*64*3) key_var is the key [human, cucumber]
#End of complicationimage conversion
_,c = sess.run([optimizer, cost], feed_dict={input_data:img_var, output_data:key_var})
epoch_error += c
#print "Batch",i+1,"done out of",num_batches
print "Epoch",epoch+1,"completed out of",num_epochs,"\tError",epoch_error
save_path = saver.save(sess, "model.ckpt")
train_network()
def use_network():
#prediction = output
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
saver.restore(sess, "model.ckpt")
for test_file in test_file_array:
#print test_file
img = np.reshape(np.array(convert_image(test_file[0])), 250*250*3)
result = output.eval(feed_dict={input_data:[img]})
print result,tf.argmax(result,1).eval(),test_file[1]
use_network()
由于我对使用 tensorflow 还是个新手,我认为尝试创建一个可以识别人类和黄瓜之间差异的程序是个好主意。我从 Image-Net 中提取图像,并将人类图片放入 human/ 并将黄瓜照片放入 cucumber/
我创建了一个我认为程序正在执行的步骤列表:
创建一个文件路径和键数组,然后对其进行打乱。
批量创建文件路径。
批处理中的文件路径被转换为图像,调整大小为 250x250,并添加到图像批处理数组中。(此时键和图像仍然对齐)。
输入数组的图像批次和密钥批次。
在所有时期结束时,它针对每个图像中的 10 个测试网络。
当我 运行 use_network() 时,我在控制台中得到这个输出:
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.61422414 0.38577583]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
第一个数组是输出节点,第二个数组是输出的 tf.argmax(),第三个是预期的结果。
实际学习的好像也比较少,这是学习的输出:
Epoch 1 completed out of 50 Error 3762.83390808
Epoch 2 completed out of 50 Error 3758.51748657
Epoch 3 completed out of 50 Error 3753.70425415
Epoch 4 completed out of 50 Error 3748.32539368
Epoch 5 completed out of 50 Error 3742.45524597
Epoch 6 completed out of 50 Error 3736.21272278
Epoch 7 completed out of 50 Error 3729.56756592
...
Epoch 45 completed out of 50 Error 3677.34605408
Epoch 46 completed out of 50 Error 3677.34388733
Epoch 47 completed out of 50 Error 3677.34150696
Epoch 48 completed out of 50 Error 3677.3391571
Epoch 49 completed out of 50 Error 3677.33673096
Epoch 50 completed out of 50 Error 3677.33418274
我已尝试执行以下操作来尝试更改内容:
缩小图像,例如 32x32,and/or 黑白。查看较小的图像是否会导致预测发生变化。
将reduce_sum和reduce_mean之间的成本方程和sigmoid_cross_entropy之间的内部方程更改为softmax_cross_entropy。
关于为什么它不起作用,我有一些想法,它们如下:
只是糟糕的代码
输入数据太大,nodes/layers 无法处理。
图像和相关密钥在某处被打乱。
我看到了几个可能的问题。首先是您正在使用密集连接层来处理大图像网络图像。您应该对图像使用卷积网络。我认为这是你最大的问题。只有在应用卷积层/池化层的金字塔将空间维度减少到 "features" 之后,您才应该添加一个密集层。
https://www.tensorflow.org/versions/r0.11/tutorials/deep_cnn/index.html
其次,即使你打算使用密集层,你也不应该将 softmax 函数用作隐藏层之间的激活(除了一些例外,例如在注意力模型中,但这是一个更高级的概念。)Softmax 强制层中每个激活的总和到您可能不想要的层。我会将隐藏层之间的激活更改为 relu 或至少是 tanh。
最后,我发现当网络接近一个常数值时,它可以帮助降低学习率。我不认为这是你的问题。我的前两条评论是你应该关注的。
这是我正在使用的代码片段:
import tensorflow as tf
import numpy as np
from PIL import Image
from os import listdir
nodes_l1 = 500
nodes_l2 = 100
nodes_l3 = 500
num_batches = 20
num_epochs = 50
# Array of file dirs
human_file_array = listdir('human/')
human_file_array = [['human/'+human_file_array[i],[1,0]] for i in range(len(human_file_array))]
cucumber_file_array = listdir('cucumber/')
cucumber_file_array = [['cucumber/'+cucumber_file_array[i],[0,1]] for i in range(len(cucumber_file_array))]
file_array_shuffled = human_file_array + cucumber_file_array
np.random.shuffle(file_array_shuffled)
htest_file_array = listdir('human_test/')
htest_file_array = [['human_test/'+htest_file_array[i],[1,0]] for i in range(len(htest_file_array))]
ctest_file_array = listdir('cucumber_test/')
ctest_file_array = [['cucumber_test/'+ctest_file_array[i],[0,1]] for i in range(len(ctest_file_array))]
test_file_array = ctest_file_array + htest_file_array
np.random.shuffle(test_file_array)
input_data = tf.placeholder('float', [None, 250*250*3]
output_data = tf.placeholder('float')
hl1_vars = {
'weight': tf.Variable(tf.random_normal([250*250*3, nodes_l1])),
'bias': tf.Variable(tf.random_normal([nodes_l1]))
}
hl2_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l1, nodes_l2])),
'bias': tf.Variable(tf.random_normal([nodes_l2]))
}
hl3_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l2, nodes_l3])),
'bias': tf.Variable(tf.random_normal([nodes_l3]))
}
output_layer_vars = {
'weight': tf.Variable(tf.random_normal([nodes_l3, 2])),
'bias': tf.Variable(tf.random_normal([2]))
}
layer1 = tf.add(tf.matmul(input_data, hl1_vars['weight']),hl1_vars['bias'])
layer1 = tf.nn.softmax(layer1)
layer2 = tf.add(tf.matmul(layer1, hl2_vars['weight']), hl2_vars['bias'])
layer2 = tf.nn.softmax(layer2)
layer3 = tf.add(tf.matmul(layer2, hl3_vars['weight']), hl3_vars['bias'])
layer3 = tf.nn.softmax(layer3)
output = tf.add(tf.matmul(layer3, output_layer_vars['weight']), output_layer_vars['bias'])
output = tf.nn.softmax(output)
def convert_image(path):
with Image.open(path) as img:
img = img.resize((250,250))
img = img.convert('RGB')
return img
def train_network():
#prediction = output
cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(output, output_data)) # output is the prediction, output_data is key
optimizer = tf.train.AdamOptimizer().minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
for epoch in range(num_epochs):
epoch_error = 0
batch_size = int((len(file_array_shuffled)/num_batches))
for i in range(num_batches):
path_var = []
key_var = []
img_var = []
#Still Filename Batch!!
batch_file_array = file_array_shuffled[batch_size*i:(batch_size*i)+batch_size] #batch1['file&val array']['val']
for batch_val in batch_file_array:
path_var.append(batch_val[0])
key_var.append(batch_val[1])
#FROM HERE ON path_var AND key_var HAVE MATCHING INDEXES DO NOT RANDOMIZE!!!
#This section here is complicated!
for path in path_var:
img = convert_image(path)
img_var.append(np.reshape(np.array(img), 250*250*3))
#print np.shape(img_var),np.shape(key_var) #img_var is array of size (batch#, 64*64*3) key_var is the key [human, cucumber]
#End of complicationimage conversion
_,c = sess.run([optimizer, cost], feed_dict={input_data:img_var, output_data:key_var})
epoch_error += c
#print "Batch",i+1,"done out of",num_batches
print "Epoch",epoch+1,"completed out of",num_epochs,"\tError",epoch_error
save_path = saver.save(sess, "model.ckpt")
train_network()
def use_network():
#prediction = output
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
saver.restore(sess, "model.ckpt")
for test_file in test_file_array:
#print test_file
img = np.reshape(np.array(convert_image(test_file[0])), 250*250*3)
result = output.eval(feed_dict={input_data:[img]})
print result,tf.argmax(result,1).eval(),test_file[1]
use_network()
由于我对使用 tensorflow 还是个新手,我认为尝试创建一个可以识别人类和黄瓜之间差异的程序是个好主意。我从 Image-Net 中提取图像,并将人类图片放入 human/ 并将黄瓜照片放入 cucumber/
我创建了一个我认为程序正在执行的步骤列表:
创建一个文件路径和键数组,然后对其进行打乱。
批量创建文件路径。
批处理中的文件路径被转换为图像,调整大小为 250x250,并添加到图像批处理数组中。(此时键和图像仍然对齐)。
输入数组的图像批次和密钥批次。
在所有时期结束时,它针对每个图像中的 10 个测试网络。
当我 运行 use_network() 时,我在控制台中得到这个输出:
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.61422414 0.38577583]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [1, 0]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [0, 1]
[[ 0.53653401 0.46346596]] [0] [1, 0]
第一个数组是输出节点,第二个数组是输出的 tf.argmax(),第三个是预期的结果。
实际学习的好像也比较少,这是学习的输出:
Epoch 1 completed out of 50 Error 3762.83390808
Epoch 2 completed out of 50 Error 3758.51748657
Epoch 3 completed out of 50 Error 3753.70425415
Epoch 4 completed out of 50 Error 3748.32539368
Epoch 5 completed out of 50 Error 3742.45524597
Epoch 6 completed out of 50 Error 3736.21272278
Epoch 7 completed out of 50 Error 3729.56756592
...
Epoch 45 completed out of 50 Error 3677.34605408
Epoch 46 completed out of 50 Error 3677.34388733
Epoch 47 completed out of 50 Error 3677.34150696
Epoch 48 completed out of 50 Error 3677.3391571
Epoch 49 completed out of 50 Error 3677.33673096
Epoch 50 completed out of 50 Error 3677.33418274
我已尝试执行以下操作来尝试更改内容:
缩小图像,例如 32x32,and/or 黑白。查看较小的图像是否会导致预测发生变化。
将reduce_sum和reduce_mean之间的成本方程和sigmoid_cross_entropy之间的内部方程更改为softmax_cross_entropy。
关于为什么它不起作用,我有一些想法,它们如下:
只是糟糕的代码
输入数据太大,nodes/layers 无法处理。
图像和相关密钥在某处被打乱。
我看到了几个可能的问题。首先是您正在使用密集连接层来处理大图像网络图像。您应该对图像使用卷积网络。我认为这是你最大的问题。只有在应用卷积层/池化层的金字塔将空间维度减少到 "features" 之后,您才应该添加一个密集层。
https://www.tensorflow.org/versions/r0.11/tutorials/deep_cnn/index.html
其次,即使你打算使用密集层,你也不应该将 softmax 函数用作隐藏层之间的激活(除了一些例外,例如在注意力模型中,但这是一个更高级的概念。)Softmax 强制层中每个激活的总和到您可能不想要的层。我会将隐藏层之间的激活更改为 relu 或至少是 tanh。
最后,我发现当网络接近一个常数值时,它可以帮助降低学习率。我不认为这是你的问题。我的前两条评论是你应该关注的。