spacy 中的词向量示例问题
Word vectors example issue in spacy
from spacy.en import English
from numpy import dot
from numpy.linalg import norm
parser = English()
# you can access known words from the parser's vocabulary
nasa = parser.vocab['NASA']
# cosine similarity
cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))
# gather all known words, take only the lowercased versions
allWords = list({w for w in parser.vocab if w.has_repvec and w.orth_.islower() and w.lower_ != "nasa"})
# sort by similarity to NASA
allWords.sort(key=lambda w: cosine(w.repvec, nasa.repvec))
allWords.reverse()
print("Top 10 most similar words to NASA:")
for word in allWords[:10]:
print(word.orth_)
我正在尝试 运行 上述示例,但出现以下错误:
Traceback (most recent call last):
File "C:\Users\bulusu.kiran\Documents\WORK\nlp\wordVectors1.py", line 8, in <module>
nasa = parser.vocab['NASA']
File "spacy/vocab.pyx", line 330, in spacy.vocab.Vocab.__getitem__ (spacy/vocab.cpp:7708)
orth = id_or_string TypeError: an integer is required
导致此错误的原因是什么?
您使用的 Python 是什么版本?这可能是 Unicode 错误的结果;我通过替换
让它在 Python 2.7 中工作
nasa = parser.vocab['NASA']
和
nasa = parser.vocab[u'NASA']
然后你会得到这个错误:
AttributeError: 'spacy.lexeme.Lexeme' object has no attribute 'has_repvec'
有一个 similar issue on the SpaCy repo,但可以通过将 has_repvec
替换为 has_vector
并将 repvec
替换为 vector
来解决这些问题。我也会对那个 GitHub 线程发表评论。
我使用的完整更新代码:
import spacy
from numpy import dot
from numpy.linalg import norm
parser = spacy.load('en')
nasa = parser.vocab[u'NASA']
# cosine similarity
cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))
# gather all known words, take only the lowercased versions
allWords = list({w for w in parser.vocab if w.has_vector and w.orth_.islower() and w.lower_ != "nasa"})
# sort by similarity to NASA
allWords.sort(key=lambda w: cosine(w.vector, nasa.vector))
allWords.reverse()
print("Top 10 most similar words to NASA:")
for word in allWords[:10]:
print(word.orth_)
希望对您有所帮助!
from spacy.en import English
from numpy import dot
from numpy.linalg import norm
parser = English()
# you can access known words from the parser's vocabulary
nasa = parser.vocab['NASA']
# cosine similarity
cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))
# gather all known words, take only the lowercased versions
allWords = list({w for w in parser.vocab if w.has_repvec and w.orth_.islower() and w.lower_ != "nasa"})
# sort by similarity to NASA
allWords.sort(key=lambda w: cosine(w.repvec, nasa.repvec))
allWords.reverse()
print("Top 10 most similar words to NASA:")
for word in allWords[:10]:
print(word.orth_)
我正在尝试 运行 上述示例,但出现以下错误:
Traceback (most recent call last):
File "C:\Users\bulusu.kiran\Documents\WORK\nlp\wordVectors1.py", line 8, in <module>
nasa = parser.vocab['NASA']
File "spacy/vocab.pyx", line 330, in spacy.vocab.Vocab.__getitem__ (spacy/vocab.cpp:7708)
orth = id_or_string TypeError: an integer is required
导致此错误的原因是什么?
您使用的 Python 是什么版本?这可能是 Unicode 错误的结果;我通过替换
让它在 Python 2.7 中工作nasa = parser.vocab['NASA']
和
nasa = parser.vocab[u'NASA']
然后你会得到这个错误:
AttributeError: 'spacy.lexeme.Lexeme' object has no attribute 'has_repvec'
有一个 similar issue on the SpaCy repo,但可以通过将 has_repvec
替换为 has_vector
并将 repvec
替换为 vector
来解决这些问题。我也会对那个 GitHub 线程发表评论。
我使用的完整更新代码:
import spacy
from numpy import dot
from numpy.linalg import norm
parser = spacy.load('en')
nasa = parser.vocab[u'NASA']
# cosine similarity
cosine = lambda v1, v2: dot(v1, v2) / (norm(v1) * norm(v2))
# gather all known words, take only the lowercased versions
allWords = list({w for w in parser.vocab if w.has_vector and w.orth_.islower() and w.lower_ != "nasa"})
# sort by similarity to NASA
allWords.sort(key=lambda w: cosine(w.vector, nasa.vector))
allWords.reverse()
print("Top 10 most similar words to NASA:")
for word in allWords[:10]:
print(word.orth_)
希望对您有所帮助!