PyMC3:对分类变量进行采样时出现 PositiveDefiniteError

PyMC3: PositiveDefiniteError when sampling a Categorical variable

我正在尝试使用狄利克雷先验对分类分布的简单模型进行采样。这是我的代码:

import numpy as np
from scipy import optimize
from pymc3 import *

k = 6
alpha = 0.1 * np.ones(k)

with Model() as model:
    p = Dirichlet('p', a=alpha, shape=k)
    categ = Categorical('categ', p=p, shape=1)

    tr = sample(10000)

我收到这个错误:

PositiveDefiniteError: Scaling is not positive definite. Simple check failed. Diagonal contains negatives. Check indexes [0 1 2 3 4]

问题是 NUTS 无法正确初始化。一种解决方案是像这样使用另一个采样器:

with pm.Model() as model:
    p = pm.Dirichlet('p', a=alpha)
    categ = pm.Categorical('categ', p=p)

    step = pm.Metropolis(vars=p)
    tr = pm.sample(1000, step=step)

这里我手动分配 p 给 Metropolis,让 PyMC3 分配 categ 给合适的采样器。