从 n 中生成 k 元素的 "anti-Gray" 按需组合的算法
Algorithm for generating "anti-Gray" on-demand combinations of k elements from n
我正在尝试实现一种算法,以从一组 n 个元素中获取 k 个元素的所有组合,其中两个连续组合之间的差异被最大化(类似反向格雷码)。换句话说,应该对组合进行排序,以避免元素在一行中出现两次,这样就不会不必要地区分任何元素。
理想情况下,该算法也不会预先计算所有组合并将它们存储到内存中,而是按需提供组合。
我对此进行了广泛搜索,并找到了一些详细的答案,例如 ,但我似乎无法应用它。此外,该答案中链接的许多文章都是付费内容。
为了说明我的意思:
从一组 [0, 1, 2, 3, 4] 中,找到两个元素的所有组合。
使用一个简单的算法尝试增加最右边的元素直到不再可能,然后向左移动,增加前一个数字等,我得到以下结果:
[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
我使用以下 Java 代码生成此结果:
public class CombinationGenerator {
private final int mNrElements;
private final int[] mCurrentCombination;
public CombinationGenerator(int n, int k) {
mNrElements = n;
mCurrentCombination = new int[k];
initElements(0, 0);
// fake initial state in order not to miss first combination below
mCurrentCombination[mCurrentCombination.length - 1]--;
}
private void initElements(int startPos, int startValue) {
for (int i = startPos; i < mCurrentCombination.length; i++) {
mCurrentCombination[i] = i + startValue - startPos;
}
}
public int[] getNextCombination() {
for (int i = 0; i < mCurrentCombination.length; i++) {
int pos = mCurrentCombination.length - 1 - i;
if (mCurrentCombination[pos] < mNrElements - 1 - i) {
initElements(pos, mCurrentCombination[pos] + 1);
return mCurrentCombination;
}
}
return null;
}
public static void main(String[] args) {
CombinationGenerator cg = new CombinationGenerator(5, 2);
int[] c;
while ((c = cg.getNextCombination()) != null) {
System.out.println(Arrays.toString(c));
}
}
}
这不是我想要的,因为我希望每个连续的组合都尽可能与前一个不同。目前,元素“1”连续出现四次,然后再也没有出现过。对于这个特定示例,一种解决方案是:
[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]
对于这个特定的 案例,我确实通过在生成组合后应用排序算法来实现这个结果,但这并不能满足我作为整个集合按需生成组合的要求组合必须立即生成,然后排序并保存在内存中。我不确定它是否适用于任意 k 和 n 值。最后,我很确定这不是最有效的方法,因为排序算法基本上循环遍历一组组合,试图找到一个与前一个组合不共享元素的组合。我还考虑过为每个元素保留 "hit counts" 的 table,并使用它来始终获得包含最低组合命中数的下一个组合。
我的一些经验结论是,如果 n > 2k,将有可能避免元素完全出现在两个连续的组合中。否则,至少应该可以避免元素连续出现两次以上等
您可以将此问题与 k = 2 时使用足球比赛等标准循环方案所实现的问题进行比较,但我需要针对任意 k 值的解决方案。我们可以将其想象成某种游戏的锦标赛,其中我们有 n 个玩家在一组游戏中与所有其他玩家对战,每个游戏有 k 个玩家。玩家应该尽可能不要连续打两场比赛,但也不要在两场比赛之间不必要地等待太久。
任何关于如何使用可靠的排序算法 post 生成,或者 - 最好 - 按需解决这个问题的指示,都会很棒!
注意:我们通常假设 n <= 50,k <= 5
谢谢
按照@DavidEisenstat 的建议工作的快速和肮脏的工作代码:
public static void main(String[] args) {
ArrayList<int[]> all = new ArrayList<int[]>();
// output is 0 if distance(i, j) != max, and 1 otherwise
int[][] m = buildGraph(7, 4, all);
HamiltonianCycle hc = new HamiltonianCycle();
int path[] = hc.findHamiltonianCycle(m);
if (path != null) {
// I have no proof that such a path will always exist
for (int i : path) {
System.out.println(Arrays.toString(all.get(i)));
}
}
}
以上代码的输出 (7,4);距离(长度 - size_of_intersection)始终为 3;尝试使用 4 会导致图表断开连接:
[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 1, 3, 4]
[0, 2, 5, 6]
[1, 3, 4, 5]
[0, 1, 2, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 4, 5, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 3, 4, 6]
[1, 2, 3, 5]
[0, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 1, 2, 5]
[2, 3, 4, 6]
[0, 1, 3, 5]
[2, 4, 5, 6]
[0, 1, 3, 6]
[2, 3, 4, 5]
[0, 1, 4, 6]
[2, 3, 5, 6]
[0, 1, 2, 4]
[3, 4, 5, 6]
缺少代码位:
// uses JHH's code to build sequences, stores it in 'all'
public static int[][] buildGraph(int n, int k, ArrayList<int[]> all) {
SequenceGenerator sg = new SequenceGenerator(n, k);
int[] c;
while ((c = sg.getNextCombination()) != null) {
all.add(c.clone());
}
int best = Math.min(n-k, k);
System.out.println("Best is " + best);
int matrix[][] = new int[all.size()][];
for (int i=0; i<matrix.length; i++) {
matrix[i] = new int[all.size()];
for (int j=0; j<i; j++) {
int d = distance(all.get(j), all.get(i));
matrix[i][j] = matrix[j][i] = (d != best)? 0 : 1;
}
}
return matrix;
}
距离:(根本没有效率,但与哈密尔顿计算的成本相形见绌)
public static int distance(int[] a, int[] b) {
HashSet<Integer> ha = new HashSet<Integer>();
HashSet<Integer> hb = new HashSet<Integer>();
for (int i=0; i<a.length; i++) {
ha.add(a[i]);
hb.add(b[i]);
}
ha.retainAll(hb);
return a.length - ha.size();
}
为了找到哈密顿量,我修改了 http://www.sanfoundry.com/java-program-find-hamiltonian-cycle-unweighted-graph/:
的代码
import java.util.Arrays;
public class HamiltonianCycle {
private int V, pathCount;
private int[] path;
private int[] answer;
private int[][] graph;
public int[] findHamiltonianCycle(int[][] g) {
V = g.length;
path = new int[V];
Arrays.fill(path, -1);
graph = g;
path[0] = 0;
pathCount = 1;
if (solve(0)) {
return path;
} else {
return null;
}
}
public boolean solve(int vertex) {
if (graph[vertex][0] == 1 && pathCount == V) {
return true;
}
if (pathCount == V) {
return false;
}
for (int v = 0; v < V; v++) {
if (graph[vertex][v] == 1) {
path[pathCount++] = v;
graph[vertex][v] = 0;
graph[v][vertex] = 0;
if (!isPresent(v)) {
if (solve(v)) {
answer = path.clone();
return true;
}
}
graph[vertex][v] = 1;
graph[v][vertex] = 1;
path[--pathCount] = -1;
}
}
return false;
}
public boolean isPresent(int v) {
for (int i = 0; i < pathCount - 1; i++) {
if (path[i] == v) {
return true;
}
}
return false;
}
}
请注意:对于大量组合,这将非常缓慢...
虽然我非常感谢@tucuxi 和@David Eisenstadt 所做的努力,但我发现了哈密顿方法的一些问题,即它没有解决 n 和 k 的某些值,并且某些元素也被不必要地歧视了。
我决定尝试一下我问题中列出的想法(点击次数 table),它似乎给出了很好的结果。然而,该解决方案还需要 post 代排序,这不满足按需奖金要求。对于合理的 n 和 k,这应该是可行的。
诚然,我发现我的算法 有时 似乎更喜欢导致一个元素连续出现的组合,这可能是可以调整的。但就目前而言,我的算法在 方面可能不如 tucuxi 的算法。然而,它确实为每个 n、k 提供了一个解决方案,并且似乎较少区分元素。
下面列出了我的代码。
再次感谢。
public class CombinationGenerator {
private final int N;
private final int K;
private final int[] mCurrentCombination;
public CombinationGenerator(int n, int k) {
N = n;
K = k;
mCurrentCombination = new int[k];
setElementSequence(0, 0);
mCurrentCombination[K - 1]--; // fool the first iteration
}
private void setElementSequence(int startPos, int startValue) {
for (int i = startPos; i < K; i++) {
mCurrentCombination[i] = i + startValue - startPos;
}
}
public int[] getNextCombination() {
for (int i = K - 1; i >= 0; i--) {
if (mCurrentCombination[i] < i + N - K) {
setElementSequence(i, mCurrentCombination[i] + 1);
return mCurrentCombination.clone();
}
}
return null;
}
}
public class CombinationSorter {
private final int N;
private final int K;
public CombinationSorter(int n, int k) {
N = n;
K = k;
}
public List<int[]> getSortedCombinations(List<int[]> combinations) {
List<int[]> sortedCombinations = new LinkedList<int[]>();
int[] combination = null;
int[] hitCounts = new int[N]; // how many times each element has been
// used so far
// Note that this modifies (empties) the input list
while (!combinations.isEmpty()) {
int index = findNextCombination(combinations, hitCounts, combination);
combination = combinations.remove(index);
sortedCombinations.add(combination);
addHitCounts(combination, hitCounts);
}
return sortedCombinations;
}
private int findNextCombination(List<int[]> combinations, int[] hitCounts,
int[] previousCombination) {
int lowestHitCount = Integer.MAX_VALUE;
int foundIndex = 0;
// From the remaining combinations, find the one with the least used
// elements
for (int i = 0; i < combinations.size(); i++) {
int[] comb = combinations.get(i);
int hitCount = getHitCount(comb, hitCounts);
if (hitCount < lowestHitCount) {
lowestHitCount = hitCount;
foundIndex = i;
} else if (hitCount == lowestHitCount
&& previousCombination != null
&& getNrCommonElements(comb, previousCombination) < getNrCommonElements(
combinations.get(foundIndex), previousCombination)) {
// prefer this combination if hit count is equal but it's more
// different from the previous combination in our sorted list
// than what's been found so far (avoids consecutive element
// appearances)
foundIndex = i;
}
}
return foundIndex;
}
private int getHitCount(int[] combination, int[] hitCounts) {
int hitCount = 0;
for (int i = 0; i < K; i++) {
hitCount += hitCounts[combination[i]];
}
return hitCount;
}
private void addHitCounts(int[] combination, int[] hitCounts) {
for (int i = 0; i < K; i++) {
hitCounts[combination[i]]++;
}
}
private int getNrCommonElements(int[] c1, int[] c2) {
int count = 0;
for (int i = 0; i < K; i++) {
for (int j = 0; j < K; j++) {
if (c1[i] == c2[j]) {
count++;
}
}
}
return count;
}
}
public class Test {
public static void main(String[] args) {
final int n = 7;
final int k = 3;
CombinationGenerator cg = new CombinationGenerator(n, k);
List<int[]> combinations = new LinkedList<int[]>();
int[] nc;
while ((nc = cg.getNextCombination()) != null) {
combinations.add(nc);
}
for (int[] c : combinations) {
System.out.println(Arrays.toString(c));
}
System.out.println("Sorting...");
CombinationSorter cs = new CombinationSorter(n, k);
List<int[]> sortedCombinations = cs.getSortedCombinations(combinations);
for (int[] sc : sortedCombinations) {
System.out.println(Arrays.toString(sc));
}
}
}
的结果:
[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[2, 3, 4, 5]
[0, 1, 2, 6]
[3, 4, 5, 6]
[0, 1, 2, 4]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 1, 3, 6]
[2, 4, 5, 6]
[0, 1, 3, 4]
[2, 3, 5, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 3, 4, 5]
[0, 2, 4, 6]
[1, 2, 3, 5]
[0, 1, 4, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 2, 5, 6]
[0, 1, 3, 5]
[2, 3, 4, 6]
[1, 4, 5, 6]
[0, 1, 2, 5]
[0, 3, 4, 6]
的结果:
[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]
我正在尝试实现一种算法,以从一组 n 个元素中获取 k 个元素的所有组合,其中两个连续组合之间的差异被最大化(类似反向格雷码)。换句话说,应该对组合进行排序,以避免元素在一行中出现两次,这样就不会不必要地区分任何元素。
理想情况下,该算法也不会预先计算所有组合并将它们存储到内存中,而是按需提供组合。 我对此进行了广泛搜索,并找到了一些详细的答案,例如 ,但我似乎无法应用它。此外,该答案中链接的许多文章都是付费内容。
为了说明我的意思:
从一组 [0, 1, 2, 3, 4] 中,找到两个元素的所有组合。 使用一个简单的算法尝试增加最右边的元素直到不再可能,然后向左移动,增加前一个数字等,我得到以下结果:
[0, 1]
[0, 2]
[0, 3]
[0, 4]
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
我使用以下 Java 代码生成此结果:
public class CombinationGenerator {
private final int mNrElements;
private final int[] mCurrentCombination;
public CombinationGenerator(int n, int k) {
mNrElements = n;
mCurrentCombination = new int[k];
initElements(0, 0);
// fake initial state in order not to miss first combination below
mCurrentCombination[mCurrentCombination.length - 1]--;
}
private void initElements(int startPos, int startValue) {
for (int i = startPos; i < mCurrentCombination.length; i++) {
mCurrentCombination[i] = i + startValue - startPos;
}
}
public int[] getNextCombination() {
for (int i = 0; i < mCurrentCombination.length; i++) {
int pos = mCurrentCombination.length - 1 - i;
if (mCurrentCombination[pos] < mNrElements - 1 - i) {
initElements(pos, mCurrentCombination[pos] + 1);
return mCurrentCombination;
}
}
return null;
}
public static void main(String[] args) {
CombinationGenerator cg = new CombinationGenerator(5, 2);
int[] c;
while ((c = cg.getNextCombination()) != null) {
System.out.println(Arrays.toString(c));
}
}
}
这不是我想要的,因为我希望每个连续的组合都尽可能与前一个不同。目前,元素“1”连续出现四次,然后再也没有出现过。对于这个特定示例,一种解决方案是:
[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]
对于这个特定的
您可以将此问题与 k = 2 时使用足球比赛等标准循环方案所实现的问题进行比较,但我需要针对任意 k 值的解决方案。我们可以将其想象成某种游戏的锦标赛,其中我们有 n 个玩家在一组游戏中与所有其他玩家对战,每个游戏有 k 个玩家。玩家应该尽可能不要连续打两场比赛,但也不要在两场比赛之间不必要地等待太久。
任何关于如何使用可靠的排序算法 post 生成,或者 - 最好 - 按需解决这个问题的指示,都会很棒!
注意:我们通常假设 n <= 50,k <= 5
谢谢
按照@DavidEisenstat 的建议工作的快速和肮脏的工作代码:
public static void main(String[] args) {
ArrayList<int[]> all = new ArrayList<int[]>();
// output is 0 if distance(i, j) != max, and 1 otherwise
int[][] m = buildGraph(7, 4, all);
HamiltonianCycle hc = new HamiltonianCycle();
int path[] = hc.findHamiltonianCycle(m);
if (path != null) {
// I have no proof that such a path will always exist
for (int i : path) {
System.out.println(Arrays.toString(all.get(i)));
}
}
}
以上代码的输出 (7,4);距离(长度 - size_of_intersection)始终为 3;尝试使用 4 会导致图表断开连接:
[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 1, 3, 4]
[0, 2, 5, 6]
[1, 3, 4, 5]
[0, 1, 2, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 4, 5, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 3, 4, 6]
[1, 2, 3, 5]
[0, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 1, 2, 5]
[2, 3, 4, 6]
[0, 1, 3, 5]
[2, 4, 5, 6]
[0, 1, 3, 6]
[2, 3, 4, 5]
[0, 1, 4, 6]
[2, 3, 5, 6]
[0, 1, 2, 4]
[3, 4, 5, 6]
缺少代码位:
// uses JHH's code to build sequences, stores it in 'all'
public static int[][] buildGraph(int n, int k, ArrayList<int[]> all) {
SequenceGenerator sg = new SequenceGenerator(n, k);
int[] c;
while ((c = sg.getNextCombination()) != null) {
all.add(c.clone());
}
int best = Math.min(n-k, k);
System.out.println("Best is " + best);
int matrix[][] = new int[all.size()][];
for (int i=0; i<matrix.length; i++) {
matrix[i] = new int[all.size()];
for (int j=0; j<i; j++) {
int d = distance(all.get(j), all.get(i));
matrix[i][j] = matrix[j][i] = (d != best)? 0 : 1;
}
}
return matrix;
}
距离:(根本没有效率,但与哈密尔顿计算的成本相形见绌)
public static int distance(int[] a, int[] b) {
HashSet<Integer> ha = new HashSet<Integer>();
HashSet<Integer> hb = new HashSet<Integer>();
for (int i=0; i<a.length; i++) {
ha.add(a[i]);
hb.add(b[i]);
}
ha.retainAll(hb);
return a.length - ha.size();
}
为了找到哈密顿量,我修改了 http://www.sanfoundry.com/java-program-find-hamiltonian-cycle-unweighted-graph/:
的代码import java.util.Arrays;
public class HamiltonianCycle {
private int V, pathCount;
private int[] path;
private int[] answer;
private int[][] graph;
public int[] findHamiltonianCycle(int[][] g) {
V = g.length;
path = new int[V];
Arrays.fill(path, -1);
graph = g;
path[0] = 0;
pathCount = 1;
if (solve(0)) {
return path;
} else {
return null;
}
}
public boolean solve(int vertex) {
if (graph[vertex][0] == 1 && pathCount == V) {
return true;
}
if (pathCount == V) {
return false;
}
for (int v = 0; v < V; v++) {
if (graph[vertex][v] == 1) {
path[pathCount++] = v;
graph[vertex][v] = 0;
graph[v][vertex] = 0;
if (!isPresent(v)) {
if (solve(v)) {
answer = path.clone();
return true;
}
}
graph[vertex][v] = 1;
graph[v][vertex] = 1;
path[--pathCount] = -1;
}
}
return false;
}
public boolean isPresent(int v) {
for (int i = 0; i < pathCount - 1; i++) {
if (path[i] == v) {
return true;
}
}
return false;
}
}
请注意:对于大量组合,这将非常缓慢...
虽然我非常感谢@tucuxi 和@David Eisenstadt 所做的努力,但我发现了哈密顿方法的一些问题,即它没有解决 n 和 k 的某些值,并且某些元素也被不必要地歧视了。
我决定尝试一下我问题中列出的想法(点击次数 table),它似乎给出了很好的结果。然而,该解决方案还需要 post 代排序,这不满足按需奖金要求。对于合理的 n 和 k,这应该是可行的。
诚然,我发现我的算法 有时 似乎更喜欢导致一个元素连续出现的组合,这可能是可以调整的。但就目前而言,我的算法在 方面可能不如 tucuxi 的算法。然而,它确实为每个 n、k 提供了一个解决方案,并且似乎较少区分元素。
下面列出了我的代码。
再次感谢。
public class CombinationGenerator {
private final int N;
private final int K;
private final int[] mCurrentCombination;
public CombinationGenerator(int n, int k) {
N = n;
K = k;
mCurrentCombination = new int[k];
setElementSequence(0, 0);
mCurrentCombination[K - 1]--; // fool the first iteration
}
private void setElementSequence(int startPos, int startValue) {
for (int i = startPos; i < K; i++) {
mCurrentCombination[i] = i + startValue - startPos;
}
}
public int[] getNextCombination() {
for (int i = K - 1; i >= 0; i--) {
if (mCurrentCombination[i] < i + N - K) {
setElementSequence(i, mCurrentCombination[i] + 1);
return mCurrentCombination.clone();
}
}
return null;
}
}
public class CombinationSorter {
private final int N;
private final int K;
public CombinationSorter(int n, int k) {
N = n;
K = k;
}
public List<int[]> getSortedCombinations(List<int[]> combinations) {
List<int[]> sortedCombinations = new LinkedList<int[]>();
int[] combination = null;
int[] hitCounts = new int[N]; // how many times each element has been
// used so far
// Note that this modifies (empties) the input list
while (!combinations.isEmpty()) {
int index = findNextCombination(combinations, hitCounts, combination);
combination = combinations.remove(index);
sortedCombinations.add(combination);
addHitCounts(combination, hitCounts);
}
return sortedCombinations;
}
private int findNextCombination(List<int[]> combinations, int[] hitCounts,
int[] previousCombination) {
int lowestHitCount = Integer.MAX_VALUE;
int foundIndex = 0;
// From the remaining combinations, find the one with the least used
// elements
for (int i = 0; i < combinations.size(); i++) {
int[] comb = combinations.get(i);
int hitCount = getHitCount(comb, hitCounts);
if (hitCount < lowestHitCount) {
lowestHitCount = hitCount;
foundIndex = i;
} else if (hitCount == lowestHitCount
&& previousCombination != null
&& getNrCommonElements(comb, previousCombination) < getNrCommonElements(
combinations.get(foundIndex), previousCombination)) {
// prefer this combination if hit count is equal but it's more
// different from the previous combination in our sorted list
// than what's been found so far (avoids consecutive element
// appearances)
foundIndex = i;
}
}
return foundIndex;
}
private int getHitCount(int[] combination, int[] hitCounts) {
int hitCount = 0;
for (int i = 0; i < K; i++) {
hitCount += hitCounts[combination[i]];
}
return hitCount;
}
private void addHitCounts(int[] combination, int[] hitCounts) {
for (int i = 0; i < K; i++) {
hitCounts[combination[i]]++;
}
}
private int getNrCommonElements(int[] c1, int[] c2) {
int count = 0;
for (int i = 0; i < K; i++) {
for (int j = 0; j < K; j++) {
if (c1[i] == c2[j]) {
count++;
}
}
}
return count;
}
}
public class Test {
public static void main(String[] args) {
final int n = 7;
final int k = 3;
CombinationGenerator cg = new CombinationGenerator(n, k);
List<int[]> combinations = new LinkedList<int[]>();
int[] nc;
while ((nc = cg.getNextCombination()) != null) {
combinations.add(nc);
}
for (int[] c : combinations) {
System.out.println(Arrays.toString(c));
}
System.out.println("Sorting...");
CombinationSorter cs = new CombinationSorter(n, k);
List<int[]> sortedCombinations = cs.getSortedCombinations(combinations);
for (int[] sc : sortedCombinations) {
System.out.println(Arrays.toString(sc));
}
}
}
的结果:
[0, 1, 2, 3]
[0, 4, 5, 6]
[1, 2, 3, 4]
[0, 1, 5, 6]
[2, 3, 4, 5]
[0, 1, 2, 6]
[3, 4, 5, 6]
[0, 1, 2, 4]
[0, 3, 5, 6]
[1, 2, 4, 5]
[0, 1, 3, 6]
[2, 4, 5, 6]
[0, 1, 3, 4]
[2, 3, 5, 6]
[0, 1, 4, 5]
[0, 2, 3, 6]
[1, 3, 4, 5]
[0, 2, 4, 6]
[1, 2, 3, 5]
[0, 1, 4, 6]
[0, 2, 3, 5]
[1, 2, 4, 6]
[1, 3, 5, 6]
[0, 2, 3, 4]
[1, 2, 5, 6]
[0, 3, 4, 5]
[1, 2, 3, 6]
[0, 2, 4, 5]
[1, 3, 4, 6]
[0, 2, 5, 6]
[0, 1, 3, 5]
[2, 3, 4, 6]
[1, 4, 5, 6]
[0, 1, 2, 5]
[0, 3, 4, 6]
的结果:
[0, 1]
[2, 3]
[0, 4]
[1, 2]
[3, 4]
[0, 2]
[1, 3]
[2, 4]
[0, 3]
[1, 4]