简单 accord.net 机器学习示例

Simple accord.net machine learning example

我是机器学习的新手,也是 accord.net 的新手(我编写 C#)。

我想创建一个简单的项目,在其中查看一个简单的波动数据时间序列,然后我想 accord.net 学习它并预测下一个值。

这是数据(时间序列)的样子:

X - Y

1 - 1

2 - 2

3 - 3

4 - 2

5 - 1

6 - 2

7 - 3

8 - 2

9 - 1

然后我希望它预测以下内容:

X - Y

10 - 2

11 - 3

12 - 2

13 - 1

14 - 2

15 - 3

你们能帮我举一些例子来解决这个问题吗?

一个简单的方法是使用 Accord ID3 决策树。

诀窍是找出要使用的输入 - 你不能只在 X 上训练 - 树不会从中学到任何关于 X 未来值的信息 - 但是你可以构建一些从 X 派生的特征(或以前的 Y 值),这将是有用的。

通常对于这样的问题 - 你会根据 Y(被预测的事物)的先前值而不是 X 的先前值派生的特征进行每个预测。但是,假设你可以在每个预测之间顺序观察 Y(你可以' t 然后预测任何任意 X) 所以我会坚持提出的问题。

我尝试构建一个 Accord ID3 决策树来解决下面的这个问题。我使用了 x % n 的几个不同值作为特征 - 希望树可以从中得出答案。事实上,如果我添加 (x-1) % 4 作为一个特性,它可以在一个单一的层次上只用那个属性来完成——但我想重点更多的是让树找到模式。

下面是代码:

    // this is the sequence y follows
    int[] ysequence = new int[] { 1, 2, 3, 2 };

    // this generates the correct Y for a given X
    int CalcY(int x) => ysequence[(x - 1) % 4];

    // this generates some inputs - just a few differnt mod of x
    int[] CalcInputs(int x) => new int[] { x % 2, x % 3, x % 4, x % 5, x % 6 };


    // for 
    [TestMethod]
    public void AccordID3TestWhosebugQuestion2()
    {
        // build the training data set
        int numtrainingcases = 12;
        int[][] inputs = new int[numtrainingcases][];
        int[] outputs = new int[numtrainingcases];

        Console.WriteLine("\t\t\t\t x \t y");
        for (int x = 1; x <= numtrainingcases; x++)
        {
            int y = CalcY(x);
            inputs[x-1] = CalcInputs(x);
            outputs[x-1] = y;
            Console.WriteLine("TrainingData \t " +x+"\t "+y);
        }

        // define how many values each input can have
        DecisionVariable[] attributes =
        {
            new DecisionVariable("Mod2",2),
            new DecisionVariable("Mod3",3),
            new DecisionVariable("Mod4",4),
            new DecisionVariable("Mod5",5),
            new DecisionVariable("Mod6",6)
        };

        // define how many outputs (+1 only because y doesn't use zero)
        int classCount = outputs.Max()+1;

        // create the tree
        DecisionTree tree = new DecisionTree(attributes, classCount);

        // Create a new instance of the ID3 algorithm
        ID3Learning id3learning = new ID3Learning(tree);

        // Learn the training instances! Populates the tree
        id3learning.Learn(inputs, outputs);

        Console.WriteLine();
        // now try to predict some cases that werent in the training data
        for (int x = numtrainingcases+1; x <= 2* numtrainingcases; x++)
        {
            int[] query = CalcInputs(x);

            int answer = tree.Decide(query); // makes the prediction

            Assert.AreEqual(CalcY(x), answer); // check the answer is what we expected - ie the tree got it right
            Console.WriteLine("Prediction \t\t " + x+"\t "+answer);
        }
    }

这是它产生的输出:

                 x   y
TrainingData     1   1
TrainingData     2   2
TrainingData     3   3
TrainingData     4   2
TrainingData     5   1
TrainingData     6   2
TrainingData     7   3
TrainingData     8   2
TrainingData     9   1
TrainingData     10  2
TrainingData     11  3
TrainingData     12  2

Prediction       13  1
Prediction       14  2
Prediction       15  3
Prediction       16  2
Prediction       17  1
Prediction       18  2
Prediction       19  3
Prediction       20  2
Prediction       21  1
Prediction       22  2
Prediction       23  3
Prediction       24  2

希望对您有所帮助。

编辑:根据评论,下面的示例被修改为训练目标 (Y) 的先前值 - 而不是从时间索引 (X) 派生的特征。这意味着您不能在系列开始时开始训练 - 因为您需要 Y 的先前值的回溯历史。在此示例中,我从 x=9 开始只是因为它保持相同的顺序。

        // this is the sequence y follows
    int[] ysequence = new int[] { 1, 2, 3, 2 };

    // this generates the correct Y for a given X
    int CalcY(int x) => ysequence[(x - 1) % 4];

    // this generates some inputs - just a few differnt mod of x
    int[] CalcInputs(int x) => new int[] { CalcY(x-1), CalcY(x-2), CalcY(x-3), CalcY(x-4), CalcY(x - 5) };
    //int[] CalcInputs(int x) => new int[] { x % 2, x % 3, x % 4, x % 5, x % 6 };


    // for 
    [TestMethod]
    public void AccordID3TestTestWhosebugQuestion2()
    {
        // build the training data set
        int numtrainingcases = 12;
        int starttrainingat = 9;
        int[][] inputs = new int[numtrainingcases][];
        int[] outputs = new int[numtrainingcases];

        Console.WriteLine("\t\t\t\t x \t y");
        for (int x = starttrainingat; x < numtrainingcases + starttrainingat; x++)
        {
            int y = CalcY(x);
            inputs[x- starttrainingat] = CalcInputs(x);
            outputs[x- starttrainingat] = y;
            Console.WriteLine("TrainingData \t " +x+"\t "+y);
        }

        // define how many values each input can have
        DecisionVariable[] attributes =
        {
            new DecisionVariable("y-1",4),
            new DecisionVariable("y-2",4),
            new DecisionVariable("y-3",4),
            new DecisionVariable("y-4",4),
            new DecisionVariable("y-5",4)
        };

        // define how many outputs (+1 only because y doesn't use zero)
        int classCount = outputs.Max()+1;

        // create the tree
        DecisionTree tree = new DecisionTree(attributes, classCount);

        // Create a new instance of the ID3 algorithm
        ID3Learning id3learning = new ID3Learning(tree);

        // Learn the training instances! Populates the tree
        id3learning.Learn(inputs, outputs);

        Console.WriteLine();
        // now try to predict some cases that werent in the training data
        for (int x = starttrainingat+numtrainingcases; x <= starttrainingat + 2 * numtrainingcases; x++)
        {
            int[] query = CalcInputs(x);

            int answer = tree.Decide(query); // makes the prediction

            Assert.AreEqual(CalcY(x), answer); // check the answer is what we expected - ie the tree got it right
            Console.WriteLine("Prediction \t\t " + x+"\t "+answer);
        }
    }

您还可以考虑对 Y 的先前值之间的差异进行训练 - 在 Y 的绝对值不如相对变化重要的情况下,这会更好。