使用 Dplyr 的 "group_by" 创建组,然后使用 Stringr 查找组之间的差异

Creating Groups with Dplyr's "group_by" then Using Stringr to Find Differences Between Groups

使用下面的示例,我想按 CaseWorker 对数据框进行分组,然后是客户端,然后为每个客户端组确定 "Task" 中的任务列表是否与 [= 中的任务列表相同21=]。

如果 "Task2" 而不是 "Task" 中的每个任务都可以提取并显示在新列或数据框中,我会很高兴得到一个简单的真或假,或者更好。

所以基本上我需要确保 "Task" 和 "Task2" 包含每个客户的相同条目。

如果可能的话,我想坚持使用 Dplyr 和 Stringr,或者至少留在 Tidyverse 中。我在想有一些方法可以使用 "group_by" 和 "str_detect" 或其他一些 Stringr 功能以优雅的方式实现这一点。

CaseWorker<-c("John","John","John","John","John","John","Melanie","Melanie","Melanie","Melanie","Melanie","Melanie")
Client<-c("Chris","Chris","Chris","Tom","Tom","Tom","Valerie","Valerie","Valerie","Tim","Tim","Tim")
Task<-c("Feed cat","Make dinner","Iron shirt","Make dinner","Do homework","Make lunch","Make dinner","Feed cat","Buy groceries","Do homework","Iron shirt","Make lunch")
Task2<-c("Feed cat","Make dinner","Iron shirt","Make dinner","Do homework","Feed cat","Make dinner","Feed cat","Iron shirt","Do homework","Iron shirt","Make lunch")
Df<-data.frame(CaseWorker,Client,Task,Task2)

您可以简单地通过 dplyr 并使用 %in%

来做到这一点
Df %>% 
  group_by(CaseWorker,Client) %>% 
  mutate(Check = Task %in% Task2) 

这取决于精确的大小写匹配,如果您担心,您可以执行以下操作:

 Df %>% 
  group_by(CaseWorker,Client) %>% 
  rowwise() %>% 
  mutate(Check = grepl(Task, Task2, ignore.case = TRUE)) 

但是您必须在 mutate 之前使用 rowwise 来解决 grepl(或大多数 R 函数)的矢量化性质

看看这是不是您想要的。

首先,查看 Task 是否匹配 Task2。如果不是,return Task2 作为一个新变量。我将其存储到一个新的数据框中 df2

df2 <- Df %>% 
    mutate(match = Task == Task2,
           non_match = ifelse(!match, Task2, "")) 
df2

#    CaseWorker  Client          Task       Task2 match  non_match
# 1        John   Chris      Feed cat    Feed cat  TRUE           
# 2        John   Chris   Make dinner Make dinner  TRUE           
# 3        John   Chris    Iron shirt  Iron shirt  TRUE           
# 4        John     Tom   Make dinner Make dinner  TRUE           
# 5        John     Tom   Do homework Do homework  TRUE           
# 6        John     Tom    Make lunch    Feed cat FALSE   Feed cat
# 7     Melanie Valerie   Make dinner Make dinner  TRUE           
# 8     Melanie Valerie      Feed cat    Feed cat  TRUE           
# 9     Melanie Valerie Buy groceries  Iron shirt FALSE Iron shirt
# 10    Melanie     Tim   Do homework Do homework  TRUE           
# 11    Melanie     Tim    Iron shirt  Iron shirt  TRUE           
# 12    Melanie     Tim    Make lunch  Make lunch  TRUE           

然后 summarise 结果以查看单个 CaseWorker/Client 对是否匹配所有条目。

df2 %>% 
   group_by(CaseWorker, Client) %>% 
   summarise(n = n(),
             matches = sum(match),
             all_match = n == matches)

#   CaseWorker  Client     n matches all_match
#        <chr>   <chr> <int>   <int>     <lgl>
# 1       John   Chris     3       3      TRUE
# 2       John     Tom     3       2     FALSE
# 3    Melanie     Tim     3       3      TRUE
# 4    Melanie Valerie     3       2     FALSE

如果您需要原始数据集中的 all_match 变量,您当然可以将其合并回您的数据框中。

如果您想使用 stringr 包。以下内容也适合您。

Df %>% 
     group_by(CaseWorker,Client) %>% 
     mutate(Check=str_detect(as.character(Task),as.character(Task2))

这可能只是我误解了这个问题,但我认为如果您想要的只是任务与 Task2 不匹配的记录,您可能会过度复杂化这个问题。

> Df[which(Df$Task != Df$Task2),]

===  ==========  =======  =============  ==========
\    CaseWorker  Client   Task           Task2     
===  ==========  =======  =============  ==========
6    John        Tom      Make lunch     Feed cat  
9    Melanie     Valerie  Buy groceries  Iron shirt
===  ==========  =======  =============  ==========