如何减少 python 中的多处理时间
How to reduce time for multiprocessing in python
我正在尝试在python中构建多处理以降低计算速度,但似乎在多处理之后,整体计算速度显着下降。我创建了 4 个不同的进程并将数据帧拆分为 4 个不同的数据帧,这将是每个进程的输入。对每道工序进行计时后,感觉开销成本很大,想知道有没有什么办法可以减少这些开销。
我正在使用 windows7、python 3.5,我的机器有 8 个内核。
def doSomething(args, dataPassed,):
processing data, and calculating outputs
def parallelize_dataframe(df, nestedApply):
df_split = np.array_split(df, 4)
pool = multiprocessing.Pool(4)
df = pool.map(nestedApply, df_split)
print ('finished with Simulation')
time = float((dt.datetime.now() - startTime).total_seconds())
pool.close()
pool.join()
def nestedApply(df):
func2 = partial(doSomething, args=())
res = df.apply(func2, axis=1)
res = [output Tables]
return res
if __name__ == '__main__':
data = pd.read_sql_query(query, conn)
parallelize_dataframe(data, nestedApply)
我建议使用队列而不是将您的 DataFrame 作为块提供。您需要大量资源来复制每个块,并且需要相当长的时间才能完成。如果您的 DataFrame 非常大,您可能 运行 内存不足。使用队列,您可以受益于 pandas 中的快速迭代器。
这是我的方法。开销随着工作人员的复杂性而降低。不幸的是,我的工人太简单了,无法真正证明这一点,但是 sleep
模拟了一点复杂性。
import pandas as pd
import multiprocessing as mp
import numpy as np
import time
def worker(in_queue, out_queue):
for row in iter(in_queue.get, 'STOP'):
value = (row[1] * row[2] / row[3]) + row[4]
time.sleep(0.1)
out_queue.put((row[0], value))
if __name__ == "__main__":
# fill a DataFrame
df = pd.DataFrame(np.random.randn(1e5, 4), columns=list('ABCD'))
in_queue = mp.Queue()
out_queue = mp.Queue()
# setup workers
numProc = 2
process = [mp.Process(target=worker,
args=(in_queue, out_queue)) for x in range(numProc)]
# run processes
for p in process:
p.start()
# iterator over rows
it = df.itertuples()
# fill queue and get data
# code fills the queue until a new element is available in the output
# fill blocks if no slot is available in the in_queue
for i in range(len(df)):
while out_queue.empty():
# fill the queue
try:
row = next(it)
in_queue.put((row[0], row[1], row[2], row[3], row[4]), block=True) # row = (index, A, B, C, D) tuple
except StopIteration:
break
row_data = out_queue.get()
df.loc[row_data[0], "Result"] = row_data[1]
# signals for processes stop
for p in process:
in_queue.put('STOP')
# wait for processes to finish
for p in process:
p.join()
使用 numProc = 2
每个循环需要 50 秒,使用 numProc = 4
速度是原来的两倍。
我正在尝试在python中构建多处理以降低计算速度,但似乎在多处理之后,整体计算速度显着下降。我创建了 4 个不同的进程并将数据帧拆分为 4 个不同的数据帧,这将是每个进程的输入。对每道工序进行计时后,感觉开销成本很大,想知道有没有什么办法可以减少这些开销。
我正在使用 windows7、python 3.5,我的机器有 8 个内核。
def doSomething(args, dataPassed,):
processing data, and calculating outputs
def parallelize_dataframe(df, nestedApply):
df_split = np.array_split(df, 4)
pool = multiprocessing.Pool(4)
df = pool.map(nestedApply, df_split)
print ('finished with Simulation')
time = float((dt.datetime.now() - startTime).total_seconds())
pool.close()
pool.join()
def nestedApply(df):
func2 = partial(doSomething, args=())
res = df.apply(func2, axis=1)
res = [output Tables]
return res
if __name__ == '__main__':
data = pd.read_sql_query(query, conn)
parallelize_dataframe(data, nestedApply)
我建议使用队列而不是将您的 DataFrame 作为块提供。您需要大量资源来复制每个块,并且需要相当长的时间才能完成。如果您的 DataFrame 非常大,您可能 运行 内存不足。使用队列,您可以受益于 pandas 中的快速迭代器。
这是我的方法。开销随着工作人员的复杂性而降低。不幸的是,我的工人太简单了,无法真正证明这一点,但是 sleep
模拟了一点复杂性。
import pandas as pd
import multiprocessing as mp
import numpy as np
import time
def worker(in_queue, out_queue):
for row in iter(in_queue.get, 'STOP'):
value = (row[1] * row[2] / row[3]) + row[4]
time.sleep(0.1)
out_queue.put((row[0], value))
if __name__ == "__main__":
# fill a DataFrame
df = pd.DataFrame(np.random.randn(1e5, 4), columns=list('ABCD'))
in_queue = mp.Queue()
out_queue = mp.Queue()
# setup workers
numProc = 2
process = [mp.Process(target=worker,
args=(in_queue, out_queue)) for x in range(numProc)]
# run processes
for p in process:
p.start()
# iterator over rows
it = df.itertuples()
# fill queue and get data
# code fills the queue until a new element is available in the output
# fill blocks if no slot is available in the in_queue
for i in range(len(df)):
while out_queue.empty():
# fill the queue
try:
row = next(it)
in_queue.put((row[0], row[1], row[2], row[3], row[4]), block=True) # row = (index, A, B, C, D) tuple
except StopIteration:
break
row_data = out_queue.get()
df.loc[row_data[0], "Result"] = row_data[1]
# signals for processes stop
for p in process:
in_queue.put('STOP')
# wait for processes to finish
for p in process:
p.join()
使用 numProc = 2
每个循环需要 50 秒,使用 numProc = 4
速度是原来的两倍。