如何使用pandas按组计算时差?
How to calculate time difference by group using pandas?
问题
我想按组计算diff
。而且我不知道如何对 time
列进行排序,以便每组结果都排序并且是积极的。
原始数据:
In [37]: df
Out[37]:
id time
0 A 2016-11-25 16:32:17
1 A 2016-11-25 16:36:04
2 A 2016-11-25 16:35:29
3 B 2016-11-25 16:35:24
4 B 2016-11-25 16:35:46
我想要的结果
Out[40]:
id time
0 A 00:35
1 A 03:12
2 B 00:22
注意:time col的类型是timedelta64[ns]
正在尝试
In [38]: df['time'].diff(1)
Out[38]:
0 NaT
1 00:03:47
2 -1 days +23:59:25
3 -1 days +23:59:55
4 00:00:22
Name: time, dtype: timedelta64[ns]
没有得到想要的结果。
希望
不仅解决了问题,而且代码可以运行快速,因为有 5000 万行。
您可以使用 sort_values
with groupby
and aggregating diff
:
df['diff'] = df.sort_values(['id','time']).groupby('id')['time'].diff()
print (df)
id time diff
0 A 2016-11-25 16:32:17 NaT
1 A 2016-11-25 16:36:04 00:00:35
2 A 2016-11-25 16:35:29 00:03:12
3 B 2016-11-25 16:35:24 NaT
4 B 2016-11-25 16:35:46 00:00:22
如果需要删除列 diff
中带有 NaT
的行,请使用 dropna
:
df = df.dropna(subset=['diff'])
print (df)
id time diff
2 A 2016-11-25 16:35:29 00:03:12
1 A 2016-11-25 16:36:04 00:00:35
4 B 2016-11-25 16:35:46 00:00:22
您也可以覆盖列:
df.time = df.sort_values(['id','time']).groupby('id')['time'].diff()
print (df)
id time
0 A NaT
1 A 00:00:35
2 A 00:03:12
3 B NaT
4 B 00:00:22
df.time = df.sort_values(['id','time']).groupby('id')['time'].diff()
df = df.dropna(subset=['time'])
print (df)
id time
1 A 00:00:35
2 A 00:03:12
4 B 00:00:22
问题
我想按组计算diff
。而且我不知道如何对 time
列进行排序,以便每组结果都排序并且是积极的。
原始数据:
In [37]: df
Out[37]:
id time
0 A 2016-11-25 16:32:17
1 A 2016-11-25 16:36:04
2 A 2016-11-25 16:35:29
3 B 2016-11-25 16:35:24
4 B 2016-11-25 16:35:46
我想要的结果
Out[40]:
id time
0 A 00:35
1 A 03:12
2 B 00:22
注意:time col的类型是timedelta64[ns]
正在尝试
In [38]: df['time'].diff(1)
Out[38]:
0 NaT
1 00:03:47
2 -1 days +23:59:25
3 -1 days +23:59:55
4 00:00:22
Name: time, dtype: timedelta64[ns]
没有得到想要的结果。
希望
不仅解决了问题,而且代码可以运行快速,因为有 5000 万行。
您可以使用 sort_values
with groupby
and aggregating diff
:
df['diff'] = df.sort_values(['id','time']).groupby('id')['time'].diff()
print (df)
id time diff
0 A 2016-11-25 16:32:17 NaT
1 A 2016-11-25 16:36:04 00:00:35
2 A 2016-11-25 16:35:29 00:03:12
3 B 2016-11-25 16:35:24 NaT
4 B 2016-11-25 16:35:46 00:00:22
如果需要删除列 diff
中带有 NaT
的行,请使用 dropna
:
df = df.dropna(subset=['diff'])
print (df)
id time diff
2 A 2016-11-25 16:35:29 00:03:12
1 A 2016-11-25 16:36:04 00:00:35
4 B 2016-11-25 16:35:46 00:00:22
您也可以覆盖列:
df.time = df.sort_values(['id','time']).groupby('id')['time'].diff()
print (df)
id time
0 A NaT
1 A 00:00:35
2 A 00:03:12
3 B NaT
4 B 00:00:22
df.time = df.sort_values(['id','time']).groupby('id')['time'].diff()
df = df.dropna(subset=['time'])
print (df)
id time
1 A 00:00:35
2 A 00:03:12
4 B 00:00:22