如何将数据帧中的数据调用到 Haversine 函数中
How to call data from a dataframe into Haversine function
我有一个名为 lat_long 的数据框,其中包含一些位置的纬度和经度。我想找出以下每个位置之间的区别。当我使用示例 haversine 函数时,出现错误。 KeyError: ('1', u'occurred at index 0').
1 2
0 -6.081689 145.391881
1 -5.207083 145.788700
2 -5.826789 144.295861
3 -6.569828 146.726242
4 -9.443383 147.220050
def haversine(row):
lon1 = lat_long['1']
lat1 = lat_long['2']
lon2 = row['1']
lat2 = row['2']
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * arcsin(sqrt(a))
km = 6367 * c
return km
lat_long['distance'] = lat_long.apply(lambda row: haversine(row), axis=1)
lat_long
尝试 this solution:
def haversine_np(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
演示:
In [17]: df
Out[17]:
lat lon
0 -6.081689 145.391881
1 -5.207083 145.788700
2 -5.826789 144.295861
3 -6.569828 146.726242
4 -9.443383 147.220050
In [18]: df['dist'] = \
...: haversine_np(df.lon.shift(), df.lat.shift(), df.ix[1:, 'lon'], df.ix[1:, 'lat'])
In [19]: df
Out[19]:
lat lon dist
0 -6.081689 145.391881 NaN
1 -5.207083 145.788700 106.638117
2 -5.826789 144.295861 178.907364
3 -6.569828 146.726242 280.904983
4 -9.443383 147.220050 323.913612
我有一个名为 lat_long 的数据框,其中包含一些位置的纬度和经度。我想找出以下每个位置之间的区别。当我使用示例 haversine 函数时,出现错误。 KeyError: ('1', u'occurred at index 0').
1 2
0 -6.081689 145.391881
1 -5.207083 145.788700
2 -5.826789 144.295861
3 -6.569828 146.726242
4 -9.443383 147.220050
def haversine(row):
lon1 = lat_long['1']
lat1 = lat_long['2']
lon2 = row['1']
lat2 = row['2']
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * arcsin(sqrt(a))
km = 6367 * c
return km
lat_long['distance'] = lat_long.apply(lambda row: haversine(row), axis=1)
lat_long
尝试 this solution:
def haversine_np(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
演示:
In [17]: df
Out[17]:
lat lon
0 -6.081689 145.391881
1 -5.207083 145.788700
2 -5.826789 144.295861
3 -6.569828 146.726242
4 -9.443383 147.220050
In [18]: df['dist'] = \
...: haversine_np(df.lon.shift(), df.lat.shift(), df.ix[1:, 'lon'], df.ix[1:, 'lat'])
In [19]: df
Out[19]:
lat lon dist
0 -6.081689 145.391881 NaN
1 -5.207083 145.788700 106.638117
2 -5.826789 144.295861 178.907364
3 -6.569828 146.726242 280.904983
4 -9.443383 147.220050 323.913612