将 R 中的规则生成的规则应用于新事务

Applying rules generated from arules in R to new transactions

我的目标是使用 R 包 arules 生成的规则来预测每个交易的 topic(每个交易有 1 个主题),其中每个交易是一个单词的集合文档。我有一个训练集trans.train(用来创建规则)和测试集trans.test(我想预测其中的"topic")。我也希望能够测试这些预测(规则右侧是正确主题的次数百分比)。

我能够确保每条规则的右侧是一个主题(如 topic=earn),左侧是文档中的任何其他词。所以我所有的规则都有以下形式:

{word1,...,wordN} -> {topic=topic1}

我已经对规则进行排序并想将它们应用到 trans.test 以便具有最高置信度的规则预测右侧,但我无法根据文档弄清楚如何做到这一点.

关于如何实现它有什么想法吗?我看过 arulesCBA 包,但它实现了一个更复杂的算法,而我只想使用最高置信度规则作为 topic.

的预测器

生成交易的代码:

library(arules)
#load data into R
filename = "C:/Users/sterl_000/Desktop/lab2file.csv"
data = read.csv(filename,header=TRUE,sep="\t")
#Get the number of columns in the matrix
col = dim(data)[2]
#Turn into logical matrix
data[,2:col]=(data[,2:col]>0)

#define % of training and test set
train_pct = 0.8
bound <- floor((nrow(data)*train_pct))    
#randomly permute rows
data <- data[sample(nrow(data)), ]   
#get training data    
data.train <- data[1:bound, ]
#get test data             
data.test <- data[(bound+1):nrow(data),]

#Turn into transaction format
trans.train = as(data.train,"transactions")
trans.test = as(data.test,"transactions")
#Create list of unique topics in 'topic=earn' format
#Allows us to specify only the topic label as the right hand side
uni_topics = paste0('topic=',unique(data[,1]))

#Get assocation rules
rules = apriori(trans.train, 
    parameter=list(support = 0.02,target= "rules", confidence = 0.5), 
    appearance = list(rhs = uni_topics,default='lhs'))

#Sort association rules by confidence
rules = sort(rules,by="confidence")

#Predict the right hand side, topic= in trans.train based on the sorted rules

交易示例:

> inspect(trans.train[3])

    items          transactionID
[1] {topic=coffee,              
     current,                   
     meet,                      
     group,                     
     statement,                 
     quota,                     
     organ,                     
     brazil,                    
     import,                    
     around,                    
     five,                      
     intern,                    
     produc,                    
     coffe,                     
     institut,                  
     reduc,                     
     intent,                    
     consid}                8760 

示例规则:

> inspect(rules[1])
    lhs       rhs          support    confidence lift    
[1] {qtli} => {topic=earn} 0.03761135 1          2.871171

我怀疑单词的关联规则和简单的置信度度量是否适合预测文档主题。

也就是说,尝试使用 is.subset 函数。如果没有 .csv 文件,我无法重现您的示例,但以下代码应该会根据最高置信度为您提供 trans.train[3] 的预测主题。

# sort rules by conf (you already did that but for the sake of completeness)
rules<-sort(rules, decreasing=TRUE, by="confidence")

# find all rules whose lhs matches the training example
rulesMatch <- is.subset(rules@lhs,trans.train[3])

# subset all applicable rules
applicable <- rules[rulesMatch==TRUE]

# the first rule has the highest confidence since they are sorted
prediction <- applicable[1]
inspect(prediction@rhs)

在即将发布的版本中,R 包 arulesCBA 支持此类功能,如果您将来再次需要它。

在当前的开发版本中,arulesCBA 有一个名为 CBA_ruleset 的函数,它接受一组排序的规则和 returns 一个 CBA 分类器对象。