每次我在 R 上重新训练神经网络时都会得到不同的时间序列预测值

Getting different predicted values of time series every time I re-train a neural network on R

我正在尝试用 R 上的包 nnet 拟合一些数据。 训练神经网络后,我想预测一些值,但如果我重新训练网络并再次预测,我会得到明显不同的值。

这是 copy/paste 的可重现代码,看看我在说什么。

# loading required package nnet

if(!require(nnet)){
  install.packages("nnet")
  library(nnet)
}

# reading data

data <- "year  GDP  n.households    GDP.norm    n.households.norm
1950    300.2   48902   -0.959913402290733  -1.64747365536208
1951    347.3   49673   -0.950771933085093  -1.61347968613569
1952    367.7   50474   -0.946812570626599  -1.57816299437132
1953    389.7   51435   -0.942542669936066  -1.53579178240432
1954    391.1   52799   -0.942270948983032  -1.47565199767698
1955    426.2   53557   -0.935458516517682  -1.44223120821706
1956    450.1   54764   -0.930819851676604  -1.38901367143853
1957    474.9   55270   -0.926006509080003  -1.36670375129774
1958    482 56149   -0.924628495675331  -1.32794798093459
1959    522.5   57436   -0.91676799667685   -1.27120318405475
1960    543.3   58406   -0.912730999660347  -1.22843515532636
1961    563.3   59236   -0.908849271759863  -1.19183983177526
1962    605.1   60813   -0.90073646044785   -1.12230871702817
1963    638.6   62214   -0.894234566214539  -1.06053757450397
1964    685.8   63401   -0.885073688369396  -1.00820185275077
1965    743.7   64778   -0.873836086097494  -0.947488888256956
1966    815 66676   -0.859997726132268  -0.863804642353359
1967    861.7   68251   -0.850933891484637  -0.794361709108803
1968    942.5   69859   -0.835251710766681  -0.723463781072457
1969    1019.9  71120   -0.820229423791807  -0.667865343725547
1970    1075.9  72867   -0.80936058567045   -0.590838801263173
1971    1167.8  74142   -0.791524045967725  -0.534623093398533
1972    1282.4  76030   -0.76928174509795   -0.451379755007599
1973    1428.5  77330   -0.740925722784913  -0.394061778361299
1974    1548.8  79108   -0.7175771294635    -0.315668422609668
1975    1688.9  80776   -0.690385625520608  -0.242125049497339
1976    1877.6  82368   -0.653761522779538  -0.171932573481255
1977    2086    83527   -0.613313918056492  -0.120831392763515
1978    2356.6  83918   -0.56079413956294   -0.103591909018359
1979    2632.1  85407   -0.507323337733769  -0.0379407803827123
1980    2862.5  85290   -0.46260583232019   -0.0430993982808793
1981    3210.9  86789   -0.394986132293754  0.0229926378674309
1982    3345    88458   -0.368959146721007  0.0965801017310265
1983    3638.1  89479   -0.31207242433941   0.141596758774005
1984    4040.7  91066   -0.233933241702662  0.211568781033757
1985    4346.7  91124   -0.174542804825252  0.214126044607207
1986    4590.1  92830   -0.127302176276358  0.289344866267659
1987    4870.2  93347   -0.0729385770300762 0.31213978467238
1988    5252.6  94312   0.00128006042718324 0.354687359644441
1989    5657.7  95669   0.0799044590514921  0.414518509112925
1990    5979.6  96391   0.142380869609787   0.446352031527254
1991    6174    96426   0.180111264802494   0.447895207821578
1992    6539.3  97107   0.251011024904839   0.477921009433985
1993    6878.7  98990   0.316883947376057   0.560943894068587
1994    7308.8  99627   0.400360505875972   0.589029702625274
1995    7664.1  101018  0.469319402028075   0.650359937636815
1996    7664.1  102528  0.469319402028075   0.716936972049055
1997    8608.5  103874  0.652614593488942   0.776283123253609
1998    9089.2  104705  0.745911923577082   0.812922537555974
1999    9660.6  108209  0.856812889693918   0.967416529993385
2000    10284.8 NA  0.977961617468032   NA
2001    10621.8 NA  1.04336873259119    NA
2002    10977.5 NA  1.1124052633013 NA
2003    11510.7 NA  1.21589212912822    NA
2004    12274.9 NA  1.36421295220572    NA
2005    13093.7 NA  1.52313089245155    NA
2006    13855.9 NA  1.671063542739  NA
2007    14477.6 NA  1.79172705452556    NA
2008    14718.6 NA  1.83850187572639    NA
2009    14418.6 NA  1.78027595721913    NA
2010    14964.4 NA  1.88620831162334    NA
2011    15517.9 NA  1.99363513126925    NA
2012    16163.2 NA  2.11887908197837    NA
2013    16768.1 NA  2.23628194232852    NA"

df <- read.table(text=data, header=TRUE)

# data for training the net 

input <- data.frame(df[1:50, 4])
output <- data.frame(df[1:50, 5])

# data for predicting new values

new.data <- data.frame(df[, 4])

*************************************************************

# training the neural network

net <- nnet(x=input, y=output, size=3, linout=T)

# predicting

fitted <- predict(net, new.data)

# reconverting to have number of households

house.fitted <- sd(df$n.households, na.rm=T) * fitted + mean(df$n.households, na.rm=T)

# plot of real values against predicted values

plot(df$n.households)
lines(house.fitted, col="blue")

如果您重新运行 星号线下方的代码,您可以看到预测值在每个 运行 上有何显着差异。这里有两个图,你可以看到我指的是什么:

Plot 1

Plot 2

我尝试更改隐藏神经元的数量和最大迭代次数,但我得到了相同的行为。

我是 R 神经网络和一般神经网络的新手,所以我不知道我是否遗漏了代码或问题的一般方法。我知道 ANN 可能会陷入局部最小值,但我认为他们不应该每次都预测如此不同的值。

请让我明白我做错了什么,因为这只是我想做的许多模型中的一个,我真的很想理解人工神经网络。

正如您正确指出的那样,网络可能会陷入局部最小值。由于权重的随机初始化,最终结果可能会有很大差异。最小化泛化误差的一种方法是提前停止(即 maxitabstolreltol 的不同参数值)。 nnet 支持的另一种方式是权重衰减。例如 decay = 0.001maxit = 1000,收敛前几乎没有停止,模型已经给出了更稳定的结果。

要获得更稳定的结果,您可以考虑使用 caret 包中的 avNNet 模型。它训练一定数量 (repeats) 的神经网络,然后对结果进行平均。示例:

input <- data.frame(df[1:50, 4])
colnames(input) <- "input"
output <- data.frame(df[1:50, 5])
new.data <- data.frame(df[, 4])
colnames(new.data) <- "input"

library(caret)
myTrainControl <- trainControl(method = "none")
avNNet <- train(y = output$df.1.50..5.,
             x = input,
             tuneGrid = expand.grid(.size = 3,
                                    .decay = 0.001,
                                    .bag = F),
             method = "avNNet", repeats = 15,
             maxit = 1000, linout = T,
             trControl = myTrainControl)
fitted <- predict(avNNet, new.data)
house.fitted <- sd(df$n.households, na.rm=T) * fitted + mean(df$n.households, na.rm=T)
plot(df$n.households)
lines(house.fitted, col="blue")