如何找到给定分布的区间概率?

How to find interval prbability for a given distribution?

假设我有一些数据并将它们拟合到 gamma 分布,如何找到 Pr(1 < x <= 1.5) 的区间概率,其中 x 是样本外数据点?

require(fitdistrplus)

a <- c(2.44121289,1.70292449,0.30550832,0.04332383,1.0553436,0.26912546,0.43590885,0.84514809,
0.36762336,0.94935435,1.30887437,1.08761895,0.66581035,0.83108270,1.7567334,1.00241339,
0.96263021,1.67488277,0.87400413,0.34639636,1.16804671,1.4182144,1.7378907,1.7462686,
1.7427784,0.8377457,0.1428738,0.71473956,0.8458882,0.2140742,0.9663167,0.7933085,
0.0475603,1.8657773,0.18307362,1.13519144)

fit <- fitdist(a, "gamma",lower = c(0, 0))

您可以只使用 pgammafit 中的估计参数。

b <- fit$estimate
#   shape     rate 
#1.739679 1.815995 

pgamma(1.5, b[1], b[2]) - pgamma(1, b[1], b[2])
# [1] 0.1896032

Thanks. But how about P(x > 2)?

查看 lower.tail 参数:

pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)

默认情况下,pgamma(q) 计算 Pr(x <= q)。设置 lower.tail = FALSE 得到 Pr(x > q)。所以你可以这样做:

pgamma(2, b[1], b[2], lower.tail = FALSE)
# [1] 0.08935687

或者您也可以使用

1 - pgamma(2, b[1], b[2])
# [1] 0.08935687

这里有一个示例,它使用 MCMC 技术和贝叶斯推理模式来估计新观测值落在区间 (1:1.5) 中的后验概率。这是一个无条件估计,与通过将伽马分布与最大似然参数估计相结合获得的条件估计相反。

此代码需要在您的计算机上安装 JAGS(免费且易于安装)。

library(rjags)

a <- c(2.44121289,1.70292449,0.30550832,0.04332383,1.0553436,0.26912546,0.43590885,0.84514809,
       0.36762336,0.94935435,1.30887437,1.08761895,0.66581035,0.83108270,1.7567334,1.00241339,
       0.96263021,1.67488277,0.87400413,0.34639636,1.16804671,1.4182144,1.7378907,1.7462686,
       1.7427784,0.8377457,0.1428738,0.71473956,0.8458882,0.2140742,0.9663167,0.7933085,
       0.0475603,1.8657773,0.18307362,1.13519144)

# Specify the model in JAGS language using diffuse priors for shape and scale
sink("GammaModel.txt")
cat("model{

    # Priors
    shape ~ dgamma(.001,.001)
    rate ~ dgamma(.001,.001)

    # Model structure
    for(i in 1:n){
    a[i] ~ dgamma(shape, rate)
    }
    }
    ", fill=TRUE)
sink()

jags.data <- list(a=a, n=length(a))

# Give overdispersed initial values (not important for this simple model, but very important if running complicated models where you need to check convergence by monitoring multiple chains)
inits <- function(){list(shape=runif(1,0,10), rate=runif(1,0,10))}

# Specify which parameters to monitor
params <- c("shape", "rate")

# Set-up for MCMC run
nc <- 1   # number of chains
n.adapt <-1000   # number of adaptation steps
n.burn <- 1000    # number of burn-in steps
n.iter <- 500000  # number of posterior samples
thin <- 10   # thinning of posterior samples

# Running the model
gamma_mod <- jags.model('GammaModel.txt', data = jags.data, inits=inits, n.chains=nc, n.adapt=n.adapt)
update(gamma_mod, n.burn)
gamma_samples <- coda.samples(gamma_mod,params,n.iter=n.iter, thin=thin)
# Summarize the result
summary(gamma_samples)

# Compute improper (non-normalized) probability distribution for x
x <- rep(NA, 50000)
for(i in 1:50000){
  x[i] <- rgamma(1, gamma_samples[[1]][i,1], rate = gamma_samples[[1]][i,2])
}

# Find which values of x fall in the desired range and normalize.
length(which(x>1 & x < 1.5))/length(x)

回答: Pr(1 < x <= 1.5) = 0.194 非常接近条件估计,但不能保证通常是这种情况。

有人不喜欢我上面这种以MLE为条件的做法;现在让我们看看无条件的东西。如果我们采用直接积分,我们需要三重积分:一个用于 shape,一个用于 rate,最后一个用于 x。这没有吸引力。我只会生成 Monte Carlo 估算值。

根据中心极限定理,MLE 服从正态分布。 fitdistrplus::fitdist 不给出标准错误,但我们可以使用 MASS::fitdistr 来执行精确推理。

fit <- fitdistr(a, "gamma", lower = c(0,0))

b <- fit$estimate
#   shape     rate 
#1.739737 1.816134 

V <- fit$vcov  ## covariance
          shape      rate
shape 0.1423679 0.1486193
rate  0.1486193 0.2078086

现在我们想从参数分布中抽样,得到目标概率的样本。

set.seed(0)
## sample from bivariate normal with mean `b` and covariance `V`
## Cholesky method is used here
X <- matrix(rnorm(1000 * 2), 1000)  ## 1000 `N(0, 1)` normal samples
R <- chol(V)  ## upper triangular Cholesky factor of `V`
X <- X %*% R  ## transform X under desired covariance
X <- X + b  ## shift to desired mean
## you can use `cov(X)` to check it is very close to `V`

## now samples for `Pr(1 < x < 1.5)`
p <- pgamma(1.5, X[,1], X[,2]) - pgamma(1, X[,1], X[,2])

我们可以制作 p 的直方图(如果需要,也可以进行密度估计):

hist(p, prob = TRUE)

现在,我们通常需要预测变量的样本均值:

mean(p)
# [1] 0.1906975