将年份的数据框列转换为月日年

Converting dataframe column of years to month day year

我这样做是为了做作业。

我的目标是拥有一个全新的专栏,其中只有几天过去了。有 500,000 多行...所以我的目标是:

  1. 在 Pandas 数据框中,我有这两个不同格式的日期列。我想减去这两列,然后创建一个新的 'Days Elapsed' 列,它是一个简单的整数列表。
  2. 输出到新的 CSV(此代码已完成)
  3. 现在我可以完全避免每次重新处理 code/read CSV 时都解析日期,因为这会花费很长时间并且会减慢我的工作速度。

我正在尝试转换它:

   Yearmade         Saledate
0      2004  11/16/2006 0:00
1      1996   3/26/2004 0:00
2      2001   2/26/2004 0:00

进入:

       Days Elapsed
0      1050
1      3007
2      1151

当前尝试:

year_mean = df[df['YearMade'] > 1000]['YearMade'].mean()
df.loc[df['YearMade'] == 1000, 'YearMade'] = year_mean
## There's lots of erroneous data of the year 1000, so replacing all of them with the mean of the column (mean of column without error data, that is)
df['Yearmade'] = "1/1/"+df['YearMade'].astype(str)
## This is where it errors out.
df['Yearmade'] = pd.to_datetime(df['Yearmade'])
df['Saledate'] = pd.to_datetime(df['Saledate'])
df['Age_at_Sale'] = df['Saledate'].sub(df['Yearmade'])
df = df.drop(['Saledate', 'Yearmade'], axis=1)

[then there's another class method to convert the current df into csv]

假设您有以下 DF:

In [203]: df
Out[203]:
   Yearmade   Saledate
0      2004 2006-11-16
1      1996 2004-03-26
2      2001 2004-02-26
3      1000 2003-12-23     # <--- erroneous year 

解决方案:

In [204]: df.loc[df.Yearmade <= 1900, 'Yearmade'] = round(df.Yearmade.loc[df.Yearmade > 1900].mean())

In [205]: df
Out[205]:
   Yearmade   Saledate
0      2004 2006-11-16
1      1996 2004-03-26
2      2001 2004-02-26
3      2000 2003-12-23    # <--- replaced with avg. year 

In [206]: df['days'] = (pd.to_datetime(Saledate) - pd.to_datetime(df.Yearmade, format='%Y')).dt.days

In [207]: df
Out[207]:
   Yearmade   Saledate  days
0      2004 2006-11-16  1050
1      1996 2004-03-26  3007
2      2001 2004-02-26  1151
3      2000 2003-12-23  1452