Java 多元梯度下降的实现

Java implementation of multivariate gradient descent

我正在尝试在 Java(来自 AI coursera 课程)中实现多元梯度下降算法,但我无法确定我的代码中的错误所在。

这是以下程序的输出:

Before train: parameters := [0.0, 0.0, 0.0] -> cost function := 2.5021875E9
After first iteration: parameters := [378.5833333333333, 2.214166666666667, 50043.75000000001] -> cost function := 5.404438291015627E9

如您所见,在第一次迭代后,这些值相差甚远。我做错了什么?

这是我要实现的算法:

代码:

    import java.util.*;

    public class GradientDescent {

        private double[][] trainingData;
        private double[]   means;
        private double[]   scale;

        private double[]   parameters;
        private double     learningRate;

        GradientDescent() {
            this.learningRate = 0D;
        }

        public double predict(double[] inp){
            double[] features = new double[inp.length + 1];
            features[0] = 1;
            for(int i = 0; i < inp.length; i++) {
                features[i+1] = inp[i];
            }

            double prediction = 0;
            for(int i = 0; i < parameters.length; i++) {
                prediction = parameters[i] * features[i];
            }

            return prediction;
        }

        public void train(){
            double[] tempParameters = new double[parameters.length];
            for(int i = 0; i < parameters.length; i++) {
                tempParameters[i] = parameters[i] - learningRate * partialDerivative(i);
                //System.out.println(tempParameters[i] + " = " + parameters[i] + " - " + learningRate + " * " + partialDerivative(i));
            }

            System.out.println("Before train: parameters := " + Arrays.toString(parameters) + " -> cost function := " + costFunction());
            parameters = tempParameters;
            System.out.println("After first iteration: parameters := " + Arrays.toString(parameters) + " -> cost function := " + costFunction());
        }

        private double partialDerivative(int index) {
            double sum = 0;
            for(int i = 0; i < trainingData.length; i++) {
                double[] input = new double[trainingData[i].length - 1];
                int j = 0;
                for(; j < trainingData[i].length - 1; j++) {
                    input[j] = trainingData[i][j];
                }
                sum += ((predict(input) - trainingData[i][j]) * trainingData[i][index]);
            }

            return (1D/trainingData.length) * sum;
        }

        public double[][] getTrainingData() {
            return trainingData;
        }
        public void setTrainingData(double[][] data) {
            this.trainingData = data;
            this.means = new double[this.trainingData[0].length-1];
            this.scale = new double[this.trainingData[0].length-1];

            for(int j = 0; j < data[0].length-1; j++) {
                double min = data[0][j], max = data[0][j];
                double sum = 0;
                for(int i = 0; i < data.length; i++) {
                    if(data[i][j] < min) min = data[i][j];
                    if(data[i][j] > max) max = data[i][j];
                    sum += data[i][j];
                }
                scale[j] = max - min;
                means[j] = sum / data.length;
            }
        }   

        public double[] getParameters() {
            return parameters;
        }
        public void setParameters(double[] parameters) {
            this.parameters = parameters;
        }

        public double getLearningRate() {
            return learningRate;
        }
        public void setLearningRate(double learningRate) {
            this.learningRate = learningRate;
        }

        /**              1      m           i     i  2
        *   J(theta) = ----- * SUM( h     (x ) - y  )
        *               2*m    i=1   theta
        */  
        public double costFunction() {
            double sum = 0;

            for(int i = 0; i < trainingData.length; i++) {
                double[] input = new double[trainingData[i].length - 1];
                int j = 0;
                for(; j < trainingData[i].length - 1; j++) {
                    input[j] = trainingData[i][j];
                }
                sum += Math.pow(predict(input) - trainingData[i][j], 2);
            }

            double factor = 1D/(2*trainingData.length);
            return factor * sum;
        }

        @Override
        public String toString() {
            StringBuilder sb = new StringBuilder("hypothesis: ");
            int i = 0;
            sb.append(parameters[i++] + " + ");
            for(; i < parameters.length-1; i++) {
                sb.append(parameters[i] + "*x" + i + " + ");
            }
            sb.append(parameters[i] + "*x" + i);

            sb.append("\n Feature scale: ");
            for(i = 0; i < scale.length-1; i++) {
                sb.append(scale[i] + " ");
            }
            sb.append(scale[i]);

            sb.append("\n Feature means: ");
            for(i = 0; i < means.length-1; i++) {
                sb.append(means[i] + " ");
            }
            sb.append(means[i]);

            sb.append("\n Cost fuction: " + costFunction());

            return sb.toString();
        }

        public static void main(String[] args) {

            final double[][] TDATA = {
                {200, 2, 20000},
                {300, 2, 41000},
                {400, 3, 51000},
                {500, 3, 61500},
                {800, 4, 41000},
                {900, 5, 141000}
            };

            GradientDescent gd = new GradientDescent();
            gd.setTrainingData(TDATA);
            gd.setParameters(new double[]{0D,0D,0D});
            gd.setLearningRate(0.00001);
            gd.train();
            //System.out.println(gd);
            //System.out.println("PREDICTION: " + gd.predict(new double[]{300, 2}));
        }
    }

编辑:

我更新了代码以使其更具可读性,并尝试将其映射到 Douglas 使用的符号。我认为它现在工作得更好了,但仍有一些我不完全理解的阴影区域。

似乎如果我有多个参数(如下例所示,房间数和面积),预测与第二个参数(在本例中为面积)密切相关,并且没有太多影响改变第一个参数(房间数)。

这是 {2, 200} 的预测:

PREDICTION: 200000.00686158828

这是 {5, 200} 的预测:

PREDICTION: 200003.0068315415

如您所见,这两个值之间几乎没有任何区别。

我尝试将数学转换为代码时是否仍然存在错误?

这是更新后的代码:

import java.util.*;

public class GradientDescent {

    private double[][] trainingData;
    private double[]   means;
    private double[]   scale;

    private double[]   parameters;
    private double     learningRate;

    GradientDescent() {
        this.learningRate = 0D;
    }

    public double predict(double[] inp) {
        return predict(inp, this.parameters);
    }
    private double predict(double[] inp, double[] parameters){
        double[] features = concatenate(new double[]{1}, inp);

        double prediction = 0;
        for(int j = 0; j < features.length; j++) {
            prediction += parameters[j] * features[j];
        }

        return prediction;
    }

    public void train(){
        readjustLearningRate();

        double costFunctionDelta = Math.abs(costFunction() - costFunction(iterateGradient()));

        while(costFunctionDelta > 0.0000000001) {
            System.out.println("Old cost function : " + costFunction());
            System.out.println("New cost function : " + costFunction(iterateGradient()));
            System.out.println("Delta: " + costFunctionDelta);

            parameters = iterateGradient();
            costFunctionDelta = Math.abs(costFunction() - costFunction(iterateGradient()));
            readjustLearningRate();
        }
    }

    private double[] iterateGradient() {
        double[] nextParameters = new double[parameters.length];
        // Calculate parameters for the next iteration
        for(int r = 0; r < parameters.length; r++) {
            nextParameters[r] = parameters[r] - learningRate * partialDerivative(r);
        }

        return nextParameters;
    }
    private double partialDerivative(int index) {
        double sum = 0;
        for(int i = 0; i < trainingData.length; i++) {
            int indexOfResult = trainingData[i].length - 1;
            double[] input = Arrays.copyOfRange(trainingData[i], 0, indexOfResult);
            sum += ((predict(input) - trainingData[i][indexOfResult]) * trainingData[i][index]);
        }

        return sum/trainingData.length ;
    }
    private void readjustLearningRate() {

        while(costFunction(iterateGradient()) > costFunction()) {           
            // If the cost function of the new parameters is higher that the current cost function
            // it means the gradient is diverging and we have to adjust the learning rate
            // and recalculate new parameters
            System.out.print("Learning rate: " + learningRate + " is too big, readjusted to: ");
            learningRate = learningRate/2;
            System.out.println(learningRate);
        }
        // otherwise we are taking small enough steps, we have the right learning rate
    }

    public double[][] getTrainingData() {
        return trainingData;
    }
    public void setTrainingData(double[][] data) {
        this.trainingData = data;
        this.means = new double[this.trainingData[0].length-1];
        this.scale = new double[this.trainingData[0].length-1];

        for(int j = 0; j < data[0].length-1; j++) {
            double min = data[0][j], max = data[0][j];
            double sum = 0;
            for(int i = 0; i < data.length; i++) {
                if(data[i][j] < min) min = data[i][j];
                if(data[i][j] > max) max = data[i][j];
                sum += data[i][j];
            }
            scale[j] = max - min;
            means[j] = sum / data.length;
        }
    }   

    public double[] getParameters() {
        return parameters;
    }
    public void setParameters(double[] parameters) {
        this.parameters = parameters;
    }

    public double getLearningRate() {
        return learningRate;
    }
    public void setLearningRate(double learningRate) {
        this.learningRate = learningRate;
    }

    /**              1      m           i     i  2
    *   J(theta) = ----- * SUM( h     (x ) - y  )
    *               2*m    i=1   theta
    */  
    public double costFunction() {
        return costFunction(this.parameters);
    }
    private double costFunction(double[] parameters) {
        int m = trainingData.length;
        double sum = 0;

        for(int i = 0; i < m; i++) {
            int indexOfResult = trainingData[i].length - 1;
            double[] input = Arrays.copyOfRange(trainingData[i], 0, indexOfResult);
            sum += Math.pow(predict(input, parameters) - trainingData[i][indexOfResult], 2);
        }

        double factor = 1D/(2*m);
        return factor * sum;
    }

    private double[] normalize(double[] input) {
        double[] normalized = new double[input.length];
        for(int i = 0; i < input.length; i++) {
            normalized[i] = (input[i] - means[i]) / scale[i];
        }

        return normalized;
    }

    private double[] concatenate(double[] a, double[] b) {
        int size = a.length + b.length;

        double[] concatArray = new double[size];
        int index = 0;

        for(double d : a) {
            concatArray[index++] = d;
        }
        for(double d : b) {
            concatArray[index++] = d;
        }

        return concatArray;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder("hypothesis: ");
        int i = 0;
        sb.append(parameters[i++] + " + ");
        for(; i < parameters.length-1; i++) {
            sb.append(parameters[i] + "*x" + i + " + ");
        }
        sb.append(parameters[i] + "*x" + i);

        sb.append("\n Feature scale: ");
        for(i = 0; i < scale.length-1; i++) {
            sb.append(scale[i] + " ");
        }
        sb.append(scale[i]);

        sb.append("\n Feature means: ");
        for(i = 0; i < means.length-1; i++) {
            sb.append(means[i] + " ");
        }
        sb.append(means[i]);

        sb.append("\n Cost fuction: " + costFunction());

        return sb.toString();
    }

    public static void main(String[] args) {

        final double[][] TDATA = {
            //number of rooms, area, price
            {2, 200, 200000},
            {3, 300, 300000},
            {4, 400, 400000},
            {5, 500, 500000},
            {8, 800, 800000},
            {9, 900, 900000}
        };

        GradientDescent gd = new GradientDescent();
        gd.setTrainingData(TDATA);
        gd.setParameters(new double[]{0D, 0D, 0D});
        gd.setLearningRate(0.1);
        gd.train();
        System.out.println(gd);
        System.out.println("PREDICTION: " + gd.predict(new double[]{3, 600}));
    }
}

您在计算预测时缺少 +。您应该将权重 * 输入值与

相加

prediction += parameters[i] * features[i];

因为生成您正在使用的偏导数的激活函数是 hθ = Σi x iθi.

此外,您似乎需要降低学习率才能使训练函数收敛。

--

我不知道课程的内容,所以我不确定你是否期待具体的结果,但我认为现在问题出在你的训练数据上。

您的训练数据没有区分任一输入对结果的影响程度,因为两个输入彼此成比例增加,从而产生成比例增加的结果。我建议提供一个变化更大、两个输入之间依赖性更小的数据集。

如果您正在努力获取要使用的数据,您可以尝试 UCI housing data set.(实际上,使用下面提供的数据您会更幸运)。

--

我已经 运行 你的新代码并解决了以下问题,它运行良好。你的更新引入了两个关键缺陷,你的动态学习率和你的训练终止案例。

动态学习率是一种有效的方法,但是创建一个适当降低学习率的函数可能很困难。您当前的方法过快地降低了学习率,导致它减少到一个值,该值对您的权重进行了如此微不足道的更改,算法过早停止。暂时保持恒定的学习率并手动调整它。

对于您的训练终止案例,要求成本函数像您的情况一样发生如此小的变化,将导致算法对您的训练数据进行过度训练。结果将是该算法在训练数据上表现良好,但在任何新数据上表现不佳,因为它是根据训练数据特有的细节进行预测的。

我建议大大降低要求,或者更好地实施训练验证循环。您在不同的验证集上测试参数的每次迭代,并根据该性能终止。

此外,我对输入数据的上述建议对于简单的梯度下降算法来说很差。住房数据集不是线性可分的,因此梯度下降算法(优化线性函数hθ)只会使预测大致接近平均值。

相反,您应该使用线性可分的数据,例如 UCI Iris data set。解决了上述两个问题后,您的算法可以准确地处理这些数据。

最后,我同意 Douglas 的观点,您应该考虑重写您的算法以使其更加清晰。虽然当前的实施有效,但如果您的代码简洁且有条理,它将有助于您的学习过程。您正在使用非描述性的变量名称、混合过程和 OOP 方法以及随意封装方法。

您的开始似乎很合理,但是在将数学转换为代码时出现了一些问题。请参阅以下数学。

我采取了一些步骤来阐明数学和算法的收敛机制。

  1. 为了提高易读性,在符号中使用了更标准的逗号分隔下标,而不是使用括号上标来表示行。
  2. 尝试对求和控制变量使用零基数以匹配 Java/C 索引约定,而不会在数学中引入错误。 (希望做得正确。)
  3. 根据课程 material 进行了各种替换。
  4. 确定了发布代码中变量名称与数学表示之间的映射。

后来才发现,求和循环中除了漏掉的加号之外,还有更多的错误。偏导数似乎需要重写或重大修改以匹配课程概念。

请注意,k=0->n 的内部循环生成所有特征的点积,然后在 i=0->m-1 循环中应用以解释每个训练案例。

所有这些都必须包含在每次迭代 r 中。该外循环的循环标准不应是某个最大 r 值。一旦收敛充分完成,您将需要满足一些标准。


回复评论的补充说明:

由于 Martin Fowler 所说的 Symantic Gap,很难发现代码中的不协调之处。在这种情况下,它介于三件事之间。

  1. 数学表示
  2. 讲座术语
  3. 代码中的算法

重构成员变量并从 x 矩阵中分离出 y 向量(如下所示)可能有助于发现不协调之处。

private int countMExamples;  
private int countNFeatures;  
private double[][] aX;  
private double[] aY;  
private double[] aMeans;  
private double[] aScales;  
private double[] aParamsTheta;  
private double learnRate;