Python scipy GEV 拟合与分布不匹配
Python scipy GEV fit does not match distribution
我有一个包含 240 个月度最大潮汐的数组,我正在尝试将 GEV 曲线拟合到该数据以进行 return 周期计算。然而,拟合的 GEV 曲线与输入到 GEV 函数的潮汐直方图并不相似。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme as gev
tides = np.array([204.25, 184.87, 164.15, 158.54, 194.47, 206.31, 212.04,
209.24, 186.28, 176.27, 181.72, 199.49, 205.97, 198.42, 187.2, 170.42, 188.22,
193.66, 206.12, 204.03, 187.64, 188.66, 190.92, 191.3, 196.25, 191.91, 166.42,
188.73, 192.57, 199.81, 193.57, 193.28, 198.45, 192.17, 200.9, 212.57, 205.65,
188.84, 175.5, 180.52, 199.2, 202.07, 209.27, 202.07, 187.95, 199.11, 206.81,
235.44, 204.04, 195.15, 173.85, 163.17, 191.7, 201.87, 212.38, 207.92, 171.61,
186.32, 201.58, 222.89, 206.96, 200.68, 178.82, 183.91, 198.82, 209.23,
224.03, 230.06, 199.87, 201.07, 205.59, 211.58, 210.78, 205.9, 182.66, 199.49,
195.04, 196.12, 197.82, 203.91, 188.28, 196.81, 200.88, 201.25, 212.27,
178.33, 173.86, 185.71, 191.83, 202.56, 195.54, 189.08, 184.48, 199.92,
206.66, 198.95, 188.12, 176.24, 161.95, 172.67, 196.1, 207.34, 208.96, 209.65,
178.95, 188.49, 211.91, 218.64, 201.82, 193.37, 170.33, 185.98, 201.05,
212.28, 213.93, 204.78, 195.17, 196.68, 210.0, 211.09, 208.75, 191.5, 201.17,
190.19, 195.78, 197.68, 209.58, 205.62, 190.79, 198.04, 206.89, 210.84,
202.58, 180.44, 178.58, 191.25, 209.43, 205.74, 194.24, 192.74, 193.11,
209.92, 214.03, 220.04, 187.46, 191.46, 161.37, 180.56, 192.58, 205.59, 208.1,
192.8, 180.27, 195.74, 201.17, 209.86, 201.87, 179.38, 167.11, 179.99, 208.07,
212.23, 205.14, 201.21, 180.63, 176.36, 190.89, 206.73, 205.34, 188.07,
169.57, 176.18, 191.82, 194.07, 205.99, 204.98, 200.29, 190.52, 189.14,
194.65, 188.97, 198.19, 178.03, 182.65, 194.29, 196.0, 193.19, 194.43, 179.63,
197.73, 204.24, 199.32, 209.48, 204.62, 193.44, 181.99, 196.02, 204.84, 209.4,
194.12, 175.39, 194.88, 208.65, 205.94, 197.69, 184.47, 172.59, 183.86,
199.14, 213.82, 206.46, 194.48, 175.3, 176.1, 194.91, 208.59, 209.01, 190.92,
191.17, 175.59, 195.32, 206.8, 217.82, 212.64, 195.08, 180.13, 190.87, 203.0,
196.91, 189.42, 170.31, 170.07, 181.7, 187.96, 194.01, 207.64, 194.11, 192.11,
202.95, 197.85])
gev_fit = gev.fit(tides)
x = np.linspace(np.min(tides)-10,np.max(tides)+10,1000)
gev_pdf = gev.pdf(x, gev_fit[0], gev_fit[1], gev_fit[2])
plt.subplot(1,2,1)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.xlabel('Tides (cm)')
plt.subplot(1,2,2)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.plot(x, gev_pdf, 'r--', label='GEV Fit')
plt.xlabel('Tides (cm)')
plt.legend(loc='upper left')
plt.show()
如您所见,GEV 拟合与原始数据的分布完全不匹配。您有什么建议可以改善贴合度吗?
我承认:经过几个小时的艰苦努力,这就是我所拥有的。这是 最大间距估计 的粗略示例,它似乎确实收敛到一个合理的估计向量。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme
from scipy.optimize import minimize
from collections import Counter
tides = [204.25, 184.87, 164.15, 158.54, 194.47, 206.31, 212.04, 209.24, 186.28, 176.27, 181.72, 199.50, 205.97, 198.42, 187.2, 170.42, 188.22, 193.66, 206.12, 204.03, 187.64, 188.66, 190.92, 191.3, 196.25, 191.91, 166.42, 188.73, 192.57, 199.81, 193.57, 193.28, 198.45, 192.17, 200.9, 212.57, 205.65, 188.84, 175.5, 180.52, 199.2, 202.08, 209.27, 202.07, 187.95, 199.11, 206.81, 235.44, 204.04, 195.15, 173.85, 163.17, 191.7, 201.88, 212.38, 207.92, 171.61, 186.32, 201.58, 222.89, 206.96, 200.68, 178.82, 183.91, 198.82, 209.23, 224.03, 230.06, 199.87, 201.07, 205.60, 211.58, 210.78, 205.9, 182.66, 199.49, 195.04, 196.12, 197.82, 203.91, 188.28, 196.81, 200.88, 201.25, 212.27, 178.33, 173.86, 185.71, 191.83, 202.56, 195.54, 189.08, 184.48, 199.92, 206.66, 198.95, 188.12, 176.24, 161.95, 172.67, 196.1, 207.34, 208.96, 209.65, 178.95, 188.49, 211.91, 218.64, 201.82, 193.37, 170.33, 185.98, 201.05, 212.28, 213.93, 204.78, 195.17, 196.68, 210.0, 211.09, 208.75, 191.5, 201.17, 190.19, 195.78, 197.68, 209.58, 205.62, 190.79, 198.04, 206.89, 210.84, 202.58, 180.44, 178.58, 191.25, 209.43, 205.74, 194.24, 192.74, 193.11, 209.92, 214.03, 220.04, 187.46, 191.46, 161.37, 180.56, 192.58, 205.59, 208.1, 192.8, 180.27, 195.74, 201.18, 209.86, 201.87, 179.38, 167.11, 179.99, 208.07, 212.23, 205.14, 201.21, 180.63, 176.36, 190.89, 206.73, 205.34, 188.07, 169.57, 176.18, 191.82, 194.07, 205.99, 204.98, 200.29, 190.52, 189.14, 194.65, 188.97, 198.19, 178.03, 182.65, 194.29, 196.0, 193.19, 194.43, 179.63, 197.73, 204.24, 199.32, 209.48, 204.62, 193.44, 181.99, 196.02, 204.84, 209.4, 194.12, 175.39, 194.88, 208.65, 205.94, 197.69, 184.47, 172.59, 183.86, 199.14, 213.82, 206.46, 194.48, 175.3, 176.1, 194.91, 208.59, 209.01, 190.93, 191.17, 175.59, 195.32, 206.8, 217.82, 212.64, 195.08, 180.13, 190.87, 203.0, 196.91, 189.42, 170.31, 170.07, 181.7, 187.96, 194.01, 207.64, 194.11, 192.11, 202.95, 197.85]
tides.sort()
#~ counts = Counter(tides)
#~ print (counts)
def fun(params,tides):
F = lambda x: genextreme.cdf(x,*params)
result = -sum([np.log(d) for d in np.diff([0]+[F(_) for _ in tides]+[1])])
return result
shape = 0.5
location = 234
scale = 50
x0 = (shape, location, scale)
#~ fun(x0,tides)
result = minimize(fun, x0, args=tides, method='Nelder-Mead')
print (result)
x = np.linspace(np.min(tides)-10,np.max(tides)+10,1000)
#~ gev_pdf = gev.pdf(x, gev_fit[0], gev_fit[1], gev_fit[2])
f = lambda x: genextreme.pdf(x,*result.x)
plt.subplot(1,2,1)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.xlabel('Tides (cm)')
plt.subplot(1,2,2)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.plot(x, [f(_) for _ in x], 'r--', label='GEV Fit')
plt.xlabel('Tides (cm)')
plt.legend(loc='upper left')
plt.show()
代码中的碎片,例如 Counter,代表我为识别重复数据所做的工作。它们会导致项间间距为零,从而导致尝试取零对数。我所做的是稍微扰乱项目。例如,其中一项如 201.17 变成了 201.18。
这是结果图。
无论如何,我很高兴你问起这个问题。有趣的问题。
我有一个包含 240 个月度最大潮汐的数组,我正在尝试将 GEV 曲线拟合到该数据以进行 return 周期计算。然而,拟合的 GEV 曲线与输入到 GEV 函数的潮汐直方图并不相似。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme as gev
tides = np.array([204.25, 184.87, 164.15, 158.54, 194.47, 206.31, 212.04,
209.24, 186.28, 176.27, 181.72, 199.49, 205.97, 198.42, 187.2, 170.42, 188.22,
193.66, 206.12, 204.03, 187.64, 188.66, 190.92, 191.3, 196.25, 191.91, 166.42,
188.73, 192.57, 199.81, 193.57, 193.28, 198.45, 192.17, 200.9, 212.57, 205.65,
188.84, 175.5, 180.52, 199.2, 202.07, 209.27, 202.07, 187.95, 199.11, 206.81,
235.44, 204.04, 195.15, 173.85, 163.17, 191.7, 201.87, 212.38, 207.92, 171.61,
186.32, 201.58, 222.89, 206.96, 200.68, 178.82, 183.91, 198.82, 209.23,
224.03, 230.06, 199.87, 201.07, 205.59, 211.58, 210.78, 205.9, 182.66, 199.49,
195.04, 196.12, 197.82, 203.91, 188.28, 196.81, 200.88, 201.25, 212.27,
178.33, 173.86, 185.71, 191.83, 202.56, 195.54, 189.08, 184.48, 199.92,
206.66, 198.95, 188.12, 176.24, 161.95, 172.67, 196.1, 207.34, 208.96, 209.65,
178.95, 188.49, 211.91, 218.64, 201.82, 193.37, 170.33, 185.98, 201.05,
212.28, 213.93, 204.78, 195.17, 196.68, 210.0, 211.09, 208.75, 191.5, 201.17,
190.19, 195.78, 197.68, 209.58, 205.62, 190.79, 198.04, 206.89, 210.84,
202.58, 180.44, 178.58, 191.25, 209.43, 205.74, 194.24, 192.74, 193.11,
209.92, 214.03, 220.04, 187.46, 191.46, 161.37, 180.56, 192.58, 205.59, 208.1,
192.8, 180.27, 195.74, 201.17, 209.86, 201.87, 179.38, 167.11, 179.99, 208.07,
212.23, 205.14, 201.21, 180.63, 176.36, 190.89, 206.73, 205.34, 188.07,
169.57, 176.18, 191.82, 194.07, 205.99, 204.98, 200.29, 190.52, 189.14,
194.65, 188.97, 198.19, 178.03, 182.65, 194.29, 196.0, 193.19, 194.43, 179.63,
197.73, 204.24, 199.32, 209.48, 204.62, 193.44, 181.99, 196.02, 204.84, 209.4,
194.12, 175.39, 194.88, 208.65, 205.94, 197.69, 184.47, 172.59, 183.86,
199.14, 213.82, 206.46, 194.48, 175.3, 176.1, 194.91, 208.59, 209.01, 190.92,
191.17, 175.59, 195.32, 206.8, 217.82, 212.64, 195.08, 180.13, 190.87, 203.0,
196.91, 189.42, 170.31, 170.07, 181.7, 187.96, 194.01, 207.64, 194.11, 192.11,
202.95, 197.85])
gev_fit = gev.fit(tides)
x = np.linspace(np.min(tides)-10,np.max(tides)+10,1000)
gev_pdf = gev.pdf(x, gev_fit[0], gev_fit[1], gev_fit[2])
plt.subplot(1,2,1)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.xlabel('Tides (cm)')
plt.subplot(1,2,2)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.plot(x, gev_pdf, 'r--', label='GEV Fit')
plt.xlabel('Tides (cm)')
plt.legend(loc='upper left')
plt.show()
如您所见,GEV 拟合与原始数据的分布完全不匹配。您有什么建议可以改善贴合度吗?
我承认:经过几个小时的艰苦努力,这就是我所拥有的。这是 最大间距估计 的粗略示例,它似乎确实收敛到一个合理的估计向量。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import genextreme
from scipy.optimize import minimize
from collections import Counter
tides = [204.25, 184.87, 164.15, 158.54, 194.47, 206.31, 212.04, 209.24, 186.28, 176.27, 181.72, 199.50, 205.97, 198.42, 187.2, 170.42, 188.22, 193.66, 206.12, 204.03, 187.64, 188.66, 190.92, 191.3, 196.25, 191.91, 166.42, 188.73, 192.57, 199.81, 193.57, 193.28, 198.45, 192.17, 200.9, 212.57, 205.65, 188.84, 175.5, 180.52, 199.2, 202.08, 209.27, 202.07, 187.95, 199.11, 206.81, 235.44, 204.04, 195.15, 173.85, 163.17, 191.7, 201.88, 212.38, 207.92, 171.61, 186.32, 201.58, 222.89, 206.96, 200.68, 178.82, 183.91, 198.82, 209.23, 224.03, 230.06, 199.87, 201.07, 205.60, 211.58, 210.78, 205.9, 182.66, 199.49, 195.04, 196.12, 197.82, 203.91, 188.28, 196.81, 200.88, 201.25, 212.27, 178.33, 173.86, 185.71, 191.83, 202.56, 195.54, 189.08, 184.48, 199.92, 206.66, 198.95, 188.12, 176.24, 161.95, 172.67, 196.1, 207.34, 208.96, 209.65, 178.95, 188.49, 211.91, 218.64, 201.82, 193.37, 170.33, 185.98, 201.05, 212.28, 213.93, 204.78, 195.17, 196.68, 210.0, 211.09, 208.75, 191.5, 201.17, 190.19, 195.78, 197.68, 209.58, 205.62, 190.79, 198.04, 206.89, 210.84, 202.58, 180.44, 178.58, 191.25, 209.43, 205.74, 194.24, 192.74, 193.11, 209.92, 214.03, 220.04, 187.46, 191.46, 161.37, 180.56, 192.58, 205.59, 208.1, 192.8, 180.27, 195.74, 201.18, 209.86, 201.87, 179.38, 167.11, 179.99, 208.07, 212.23, 205.14, 201.21, 180.63, 176.36, 190.89, 206.73, 205.34, 188.07, 169.57, 176.18, 191.82, 194.07, 205.99, 204.98, 200.29, 190.52, 189.14, 194.65, 188.97, 198.19, 178.03, 182.65, 194.29, 196.0, 193.19, 194.43, 179.63, 197.73, 204.24, 199.32, 209.48, 204.62, 193.44, 181.99, 196.02, 204.84, 209.4, 194.12, 175.39, 194.88, 208.65, 205.94, 197.69, 184.47, 172.59, 183.86, 199.14, 213.82, 206.46, 194.48, 175.3, 176.1, 194.91, 208.59, 209.01, 190.93, 191.17, 175.59, 195.32, 206.8, 217.82, 212.64, 195.08, 180.13, 190.87, 203.0, 196.91, 189.42, 170.31, 170.07, 181.7, 187.96, 194.01, 207.64, 194.11, 192.11, 202.95, 197.85]
tides.sort()
#~ counts = Counter(tides)
#~ print (counts)
def fun(params,tides):
F = lambda x: genextreme.cdf(x,*params)
result = -sum([np.log(d) for d in np.diff([0]+[F(_) for _ in tides]+[1])])
return result
shape = 0.5
location = 234
scale = 50
x0 = (shape, location, scale)
#~ fun(x0,tides)
result = minimize(fun, x0, args=tides, method='Nelder-Mead')
print (result)
x = np.linspace(np.min(tides)-10,np.max(tides)+10,1000)
#~ gev_pdf = gev.pdf(x, gev_fit[0], gev_fit[1], gev_fit[2])
f = lambda x: genextreme.pdf(x,*result.x)
plt.subplot(1,2,1)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.xlabel('Tides (cm)')
plt.subplot(1,2,2)
plt.hist(tides, normed=True, alpha=0.2, label='Data')
plt.plot(x, [f(_) for _ in x], 'r--', label='GEV Fit')
plt.xlabel('Tides (cm)')
plt.legend(loc='upper left')
plt.show()
代码中的碎片,例如 Counter,代表我为识别重复数据所做的工作。它们会导致项间间距为零,从而导致尝试取零对数。我所做的是稍微扰乱项目。例如,其中一项如 201.17 变成了 201.18。
这是结果图。
无论如何,我很高兴你问起这个问题。有趣的问题。