为列表列数据框的每一行拟合不同的模型
Fit a different model for each row of a list-columns data frame
用 tidyverse 中的列表列数据结构来拟合因数据框的行而异的不同模型公式的最佳方法是什么?
在 R for Data Science 中,Hadley 提供了一个很好的示例,说明如何使用列表列数据结构并轻松拟合许多模型 (http://r4ds.had.co.nz/many-models.html#gapminder)。我正在尝试找到一种方法来适应许多公式略有不同的模型。在下面改编自他的原始示例的示例中,为每个大陆拟合不同模型的最佳方法是什么?
library(gapminder)
library(dplyr)
library(tidyr)
library(purrr)
library(broom)
by_continent <- gapminder %>%
group_by(continent) %>%
nest()
by_continent <- by_continent %>%
mutate(model = map(data, ~lm(lifeExp ~ year, data = .)))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984659 0.4970649 3.8530964 355.8099 1.344184e-55 2
#3 Africa 0.2987543 0.2976269 7.6685811 264.9929 6.780085e-50 2
#4 Americas 0.4626467 0.4608435 6.8618439 256.5699 4.354220e-42 2
#5 Oceania 0.9540678 0.9519800 0.8317499 456.9671 3.299327e-16 2
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
## deviance <dbl>, df.residual <int>
我知道我可以通过迭代 by_continent 来做到这一点(效率不高,因为它估计每个大陆的每个模型:
formulae <- list(
Asia=~lm(lifeExp ~ year, data = .),
Europe=~lm(lifeExp ~ year + pop, data = .),
Africa=~lm(lifeExp ~ year + gdpPercap, data = .),
Americas=~lm(lifeExp ~ year - 1, data = .),
Oceania=~lm(lifeExp ~ year + pop + gdpPercap, data = .)
)
for (i in 1:nrow(by_continent)) {
by_continent$model[[i]] <- map(by_continent$data, formulae[[i]])[[i]]
}
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3
#3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3
#4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1
#5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
## deviance <dbl>, df.residual <int>
但是是否可以在不跟随 base R 循环的情况下执行此操作(并避免拟合我不需要的模型)?
我试过的是这样的:
by_continent <- by_continent %>%
left_join(tibble::enframe(formulae, name="continent", value="formula"))
by_continent %>%
mutate(model=map2(data, formula, est_model))
但我似乎无法想出一个有效的 est_model 函数。我试过这个函数 (h/t: https://gist.github.com/multidis/8138757) 不起作用:
est_model <- function(data, formula, ...) {
mc <- match.call()
m <- match(c("formula","data"), names(mc), 0L)
mf <- mc[c(1L, m)]
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
data.st <- data.frame(mf)
return(data.st)
}
(不可否认,这是一个人为的例子。我的实际情况是我有大量观察结果缺少我的数据中的关键自变量,所以我想用一个模型拟合所有变量的完整观察结果,另一个模型只拟合一个子集其余观察的变量。)
更新
我想出了一个可行的 est_model 函数(虽然可能效率不高):
est_model <- function(data, formula, ...) {
map(list(data), formula, ...)[[1]]
}
by_continent <- by_continent %>%
mutate(model=map2(data, formula, est_model))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3
#3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3
#4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1
#5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
## df.residual <int>
我发现列出模型公式更容易。每个模型只适合相应的 continent
一次。我向嵌套数据添加了一个新列 formula
以确保 formula
和 continent
的顺序相同,以防它们不相同。
formulae <- c(
Asia= lifeExp ~ year,
Europe= lifeExp ~ year + pop,
Africa= lifeExp ~ year + gdpPercap,
Americas= lifeExp ~ year - 1,
Oceania= lifeExp ~ year + pop + gdpPercap
)
df <- gapminder %>%
group_by(continent) %>%
nest() %>%
mutate(formula = formulae[as.character(continent)]) %>%
mutate(model = map2(formula, data, ~ lm(.x, .y))) %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
# # A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
# 1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2 -1427.65947 2861.31893 2873.26317
# 2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3 -995.41016 1998.82033 2014.36475
# 3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3 -2098.46089 4204.92179 4222.66639
# 4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1 -1083.35918 2170.71836 2178.12593
# 5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4 -22.06696 54.13392 60.02419
# # ... with 2 more variables: deviance <dbl>, df.residual <int>
我发现 purrr::modify_depth()
在原始问题中用 est_model()
完成了我想做的事情。这是我现在满意的解决方案:
library(gapminder)
library(tidyverse)
library(purrr)
library(broom)
fmlas <- tibble::tribble(
~continent, ~formula,
"Asia", ~lm(lifeExp ~ year, data = .),
"Europe", ~lm(lifeExp ~ year + pop, data = .),
"Africa", ~lm(lifeExp ~ year + gdpPercap, data = .),
"Americas", ~lm(lifeExp ~ year - 1, data = .),
"Oceania", ~lm(lifeExp ~ year + pop + gdpPercap, data = .)
)
by_continent <- gapminder %>%
nest(-continent) %>%
left_join(fmlas) %>%
mutate(model=map2(data, formula, ~modify_depth(.x, 0, .y)))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
用 tidyverse 中的列表列数据结构来拟合因数据框的行而异的不同模型公式的最佳方法是什么?
在 R for Data Science 中,Hadley 提供了一个很好的示例,说明如何使用列表列数据结构并轻松拟合许多模型 (http://r4ds.had.co.nz/many-models.html#gapminder)。我正在尝试找到一种方法来适应许多公式略有不同的模型。在下面改编自他的原始示例的示例中,为每个大陆拟合不同模型的最佳方法是什么?
library(gapminder)
library(dplyr)
library(tidyr)
library(purrr)
library(broom)
by_continent <- gapminder %>%
group_by(continent) %>%
nest()
by_continent <- by_continent %>%
mutate(model = map(data, ~lm(lifeExp ~ year, data = .)))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984659 0.4970649 3.8530964 355.8099 1.344184e-55 2
#3 Africa 0.2987543 0.2976269 7.6685811 264.9929 6.780085e-50 2
#4 Americas 0.4626467 0.4608435 6.8618439 256.5699 4.354220e-42 2
#5 Oceania 0.9540678 0.9519800 0.8317499 456.9671 3.299327e-16 2
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
## deviance <dbl>, df.residual <int>
我知道我可以通过迭代 by_continent 来做到这一点(效率不高,因为它估计每个大陆的每个模型:
formulae <- list(
Asia=~lm(lifeExp ~ year, data = .),
Europe=~lm(lifeExp ~ year + pop, data = .),
Africa=~lm(lifeExp ~ year + gdpPercap, data = .),
Americas=~lm(lifeExp ~ year - 1, data = .),
Oceania=~lm(lifeExp ~ year + pop + gdpPercap, data = .)
)
for (i in 1:nrow(by_continent)) {
by_continent$model[[i]] <- map(by_continent$data, formulae[[i]])[[i]]
}
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3
#3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3
#4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1
#5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
## deviance <dbl>, df.residual <int>
但是是否可以在不跟随 base R 循环的情况下执行此操作(并避免拟合我不需要的模型)?
我试过的是这样的:
by_continent <- by_continent %>%
left_join(tibble::enframe(formulae, name="continent", value="formula"))
by_continent %>%
mutate(model=map2(data, formula, est_model))
但我似乎无法想出一个有效的 est_model 函数。我试过这个函数 (h/t: https://gist.github.com/multidis/8138757) 不起作用:
est_model <- function(data, formula, ...) {
mc <- match.call()
m <- match(c("formula","data"), names(mc), 0L)
mf <- mc[c(1L, m)]
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
data.st <- data.frame(mf)
return(data.st)
}
(不可否认,这是一个人为的例子。我的实际情况是我有大量观察结果缺少我的数据中的关键自变量,所以我想用一个模型拟合所有变量的完整观察结果,另一个模型只拟合一个子集其余观察的变量。)
更新
我想出了一个可行的 est_model 函数(虽然可能效率不高):
est_model <- function(data, formula, ...) {
map(list(data), formula, ...)[[1]]
}
by_continent <- by_continent %>%
mutate(model=map2(data, formula, est_model))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
## A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2
#2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3
#3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3
#4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1
#5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
## df.residual <int>
我发现列出模型公式更容易。每个模型只适合相应的 continent
一次。我向嵌套数据添加了一个新列 formula
以确保 formula
和 continent
的顺序相同,以防它们不相同。
formulae <- c(
Asia= lifeExp ~ year,
Europe= lifeExp ~ year + pop,
Africa= lifeExp ~ year + gdpPercap,
Americas= lifeExp ~ year - 1,
Oceania= lifeExp ~ year + pop + gdpPercap
)
df <- gapminder %>%
group_by(continent) %>%
nest() %>%
mutate(formula = formulae[as.character(continent)]) %>%
mutate(model = map2(formula, data, ~ lm(.x, .y))) %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)
# # A tibble: 5 × 12
# continent r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
# 1 Asia 0.4356350 0.4342026 8.9244419 304.1298 6.922751e-51 2 -1427.65947 2861.31893 2873.26317
# 2 Europe 0.4984677 0.4956580 3.8584819 177.4093 3.186760e-54 3 -995.41016 1998.82033 2014.36475
# 3 Africa 0.4160797 0.4141991 7.0033542 221.2506 2.836552e-73 3 -2098.46089 4204.92179 4222.66639
# 4 Americas 0.9812082 0.9811453 8.9703814 15612.1901 4.227928e-260 1 -1083.35918 2170.71836 2178.12593
# 5 Oceania 0.9733268 0.9693258 0.6647653 243.2719 6.662577e-16 4 -22.06696 54.13392 60.02419
# # ... with 2 more variables: deviance <dbl>, df.residual <int>
我发现 purrr::modify_depth()
在原始问题中用 est_model()
完成了我想做的事情。这是我现在满意的解决方案:
library(gapminder)
library(tidyverse)
library(purrr)
library(broom)
fmlas <- tibble::tribble(
~continent, ~formula,
"Asia", ~lm(lifeExp ~ year, data = .),
"Europe", ~lm(lifeExp ~ year + pop, data = .),
"Africa", ~lm(lifeExp ~ year + gdpPercap, data = .),
"Americas", ~lm(lifeExp ~ year - 1, data = .),
"Oceania", ~lm(lifeExp ~ year + pop + gdpPercap, data = .)
)
by_continent <- gapminder %>%
nest(-continent) %>%
left_join(fmlas) %>%
mutate(model=map2(data, formula, ~modify_depth(.x, 0, .y)))
by_continent %>%
mutate(glance=map(model, glance)) %>%
unnest(glance, .drop=T)