PySpark 中的聚合稀疏向量

Aggregate sparse vector in PySpark

我有一个 Hive table,其中包含文本数据和一些与每个文档关联的元数据。看起来像这样。

from pyspark.ml.feature import Tokenizer
from pyspark.ml.feature import CountVectorizer

df = sc.parallelize([
  ("1", "doc_1", "fruit is good for you"),
  ("2", "doc_2", "you should eat fruit and veggies"),
  ("2", "doc_3", "kids eat fruit but not veggies")
]).toDF(["month","doc_id", "text"])
+-----+------+--------------------+
|month|doc_id|                text|
+-----+------+--------------------+
|    1| doc_1|fruit is good for...|
|    2| doc_2|you should eat fr...|
|    2| doc_3|kids eat fruit bu...|
+-----+------+--------------------+

我想按月统计字数。 到目前为止,我采用了 CountVectorizer 方法:

tokenizer = Tokenizer().setInputCol("text").setOutputCol("words")
tokenized = tokenizer.transform(df)

cvModel = CountVectorizer().setInputCol("words").setOutputCol("features").fit(tokenized)
counted = cvModel.transform(tokenized)
+-----+------+--------------------+--------------------+--------------------+
|month|doc_id|                text|               words|            features|
+-----+------+--------------------+--------------------+--------------------+
|    1| doc_1|fruit is good for...|[fruit, is, good,...|(12,[0,3,4,7,8],[...|
|    2| doc_2|you should eat fr...|[you, should, eat...|(12,[0,1,2,3,9,11...|
|    2| doc_3|kids eat fruit bu...|[kids, eat, fruit...|(12,[0,1,2,5,6,10...|
+-----+------+--------------------+--------------------+--------------------+

现在我想按月分组,return 看起来像:

month  word   count
1      fruit  1
1      is     1
...
2      fruit  2
2      kids   1
2      eat    2
... 

我该怎么做?

Vector* 聚合没有内置机制,但您在这里不需要。一旦你对数据进行了标记化,你就可以 explode 并聚合:

from pyspark.sql.functions import explode

(counted
    .select("month", explode("words").alias("word"))
    .groupBy("month", "word")
    .count())

如果您希望将结果限制为 vocabulary,只需添加一个过滤器:

from pyspark.sql.functions import col

(counted
    .select("month", explode("words").alias("word"))
    .where(col("word").isin(cvModel.vocabulary))
    .groupBy("month", "word")
    .count())

* 从 Spark 2.4 开始 但它在这里没有用。