如何在 ggplot2 的对数对数图中获得回归线的方程式?

How do I get the equation for a regression line in log-log plot in ggplot2?

我有一个双对数图,我通过使用得到了回归线:

geom_smooth(formula = y ~ x, method='lm') 

但现在我想获得这条线的方程式(例如 y=a*x^(-b))并打印出来。我设法在林林图中得到了它,但在这种情况下却没有。 这是代码:

mydataS<-data.frame(DurPeak_h[],IntPeak[],IntPeakxDurPeak[],ID[]) #df peak
names(mydataS)<-c("x","y","ID","IDEVENT")

plotID<-ggplot(mydataS, aes(x=x, y=y, label=IDEVENT)) + 
geom_text(check_overlap = TRUE, hjust = 0, nudge_x = 0.02)+
geom_point(colour="black", size = 2) + geom_point(aes(colour = ID)) +
geom_quantile(quantiles = qs, colour="green")+ 
scale_colour_gradient(low = "white", high="red") +
scale_x_log10(limits = c(min(DurEnd_h),max(DurEnd_h))) + 
scale_y_log10(limits = c(min(IntEnd),max(IntEnd))) +
geom_smooth(formula = y ~ x, method='lm') 

ggsave(height=7,"plot.pdf")
mydataS<-data.frame(DurPeak_h[],IntPeak[],IntPeakxDurPeak[],ID[])
names(mydataS)<-c("x","y","ID","IDEVENT")
model <- lm(y~x, header = T)
summary(model)

使用 "b" 给出的截距值和 "a"

的系数

有没有解决方法:使用nls计算两个参数ab,准确地说:

nlsPeak <- coef(nls(y ~ a*(x)^b, data = mydataS, start = list(a=30, b=-0.1)))

然后用 annotate 绘制直线(参见一些示例 here),最后使用函数打印方程:

power_eqn = function(ds){
  m = nls(y ~ a*x^b, start = list(a=30, b=-0.1), data = ds);
  eq <- substitute(italic(y) == a  ~italic(x)^b, 
               list(a = format(coef(m)[1], digits = 4), 
                    b = format(coef(m)[2], digits = 2)))
  as.character(as.expression(eq));
}

调用如下:

annotate("text",x = 3, y = 180,label = power_eqn(mydataS), parse=TRUE, col="black") +

希望对您有所帮助!