如何在 Quantlib 中提前一天
How to advance the day in Quantlib
我的理解是,为了提前一天,你会做这样的事情:
ql.Settings.instance().evaluation_date = calculation_date + 1
但是,当我执行以下代码时,我得到了相同的选项值:
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(calculation_date, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
[idf@node3 python]$ python european_option.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[idf@node3 python]$
编辑
按照下面的建议更改了代码,但是日期更改对计算没有影响。
[idf@node3 python]$ python advance_day.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[idf@node3 python]$
以下是根据建议所做的代码更改。
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(0, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
# Also tried calendar.advance(calculation_date,1,ql.Days)
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
计算日期并非全部。您正在设置曲线,以便它们的参考日期是固定的(也就是说,您正在调用带日期的构造函数;请参阅 this post for details, or this video 示例)。
如果您指定参考日期,则该参考日期独立于计算日期使用;那是因为它们不一定相同(例如,您可能希望利率曲线基于即期日期而不是今天的日期)。因此,即使您更改了计算日期,从曲线返回的波动率和利率仍将相对于它们的参考日期没有移动。
为了得到你想要的效果,你可以创建曲线,让它们随评估日期移动;例如,而不是
ql.FlatForward(calculation_date, risk_free_rate, day_count)
你可以使用
ql.FlatForward(0, calendar, risk_free_rate, day_count)
表示参考日期指定为“计算日期后0个工作日”,即计算日期。波动率曲线具有类似的构造函数。
我的理解是,为了提前一天,你会做这样的事情:
ql.Settings.instance().evaluation_date = calculation_date + 1
但是,当我执行以下代码时,我得到了相同的选项值:
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(calculation_date, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
[idf@node3 python]$ python european_option.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[idf@node3 python]$
编辑
按照下面的建议更改了代码,但是日期更改对计算没有影响。
[idf@node3 python]$ python advance_day.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[idf@node3 python]$
以下是根据建议所做的代码更改。
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(0, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
# Also tried calendar.advance(calculation_date,1,ql.Days)
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
计算日期并非全部。您正在设置曲线,以便它们的参考日期是固定的(也就是说,您正在调用带日期的构造函数;请参阅 this post for details, or this video 示例)。
如果您指定参考日期,则该参考日期独立于计算日期使用;那是因为它们不一定相同(例如,您可能希望利率曲线基于即期日期而不是今天的日期)。因此,即使您更改了计算日期,从曲线返回的波动率和利率仍将相对于它们的参考日期没有移动。
为了得到你想要的效果,你可以创建曲线,让它们随评估日期移动;例如,而不是
ql.FlatForward(calculation_date, risk_free_rate, day_count)
你可以使用
ql.FlatForward(0, calendar, risk_free_rate, day_count)
表示参考日期指定为“计算日期后0个工作日”,即计算日期。波动率曲线具有类似的构造函数。