RandomizedSearchCV 使用相同的 random_state 给出不同的结果
RandomizedSearchCV gives different results using the same random_state
我正在使用 RandomizedSearchCV
使用管道执行特征选择和超参数优化。以下是代码摘要:
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.grid_search import RandomizedSearchCV
from sklearn.pipeline import make_pipeline
from scipy.stats import randint as sp_randint
rng = 44
X_train, X_test, y_train, y_test =
train_test_split(data[features], data['target'], random_state=rng)
clf = RandomForestClassifier(random_state=rng)
kbest = SelectKBest()
pipe = make_pipeline(kbest,clf)
upLim = X_train.shape[1]
param_dist = {'selectkbest__k':sp_randint(upLim/2,upLim+1),
'randomforestclassifier__n_estimators': sp_randint(5,150),
'randomforestclassifier__max_depth': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, None],
'randomforestclassifier__criterion': ["gini", "entropy"],
'randomforestclassifier__max_features': ['auto', 'sqrt', 'log2']}
clf_opt = RandomizedSearchCV(pipe, param_distributions= param_dist,
scoring='roc_auc', n_jobs=1, cv=3, random_state=rng)
clf_opt.fit(X_train,y_train)
y_pred = clf_opt.predict(X_test)
我为 train_test_split
、RandomForestClassifer
和 RandomizedSearchCV
使用常量 random_state
。但是,如果我 运行 几次,上面代码的结果会略有不同。更具体地说,我的代码中有几个测试单元,这些略有不同的结果导致测试单元失败。我不应该因为使用相同的 random_state
而获得相同的结果吗?我的代码中是否遗漏了在代码的一部分中产生随机性的任何内容?
我通常会回答我自己的问题!我会把它留给有类似问题的其他人:
为了确保避免任何随机性,我定义了一个随机种子。代码如下:
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.grid_search import RandomizedSearchCV
from sklearn.pipeline import make_pipeline
from scipy.stats import randint as sp_randint
seed = np.random.seed(22)
X_train, X_test, y_train, y_test =
train_test_split(data[features], data['target'])
clf = RandomForestClassifier()
kbest = SelectKBest()
pipe = make_pipeline(kbest,clf)
upLim = X_train.shape[1]
param_dist = {'selectkbest__k':sp_randint(upLim/2,upLim+1),
'randomforestclassifier__n_estimators': sp_randint(5,150),
'randomforestclassifier__max_depth': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, None],
'randomforestclassifier__criterion': ["gini", "entropy"],
'randomforestclassifier__max_features': ['auto', 'sqrt', 'log2']}
clf_opt = RandomizedSearchCV(pipe, param_distributions= param_dist,
scoring='roc_auc', n_jobs=1, cv=3)
clf_opt.fit(X_train,y_train)
y_pred = clf_opt.predict(X_test)
希望对大家有所帮助!
我正在使用 RandomizedSearchCV
使用管道执行特征选择和超参数优化。以下是代码摘要:
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.grid_search import RandomizedSearchCV
from sklearn.pipeline import make_pipeline
from scipy.stats import randint as sp_randint
rng = 44
X_train, X_test, y_train, y_test =
train_test_split(data[features], data['target'], random_state=rng)
clf = RandomForestClassifier(random_state=rng)
kbest = SelectKBest()
pipe = make_pipeline(kbest,clf)
upLim = X_train.shape[1]
param_dist = {'selectkbest__k':sp_randint(upLim/2,upLim+1),
'randomforestclassifier__n_estimators': sp_randint(5,150),
'randomforestclassifier__max_depth': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, None],
'randomforestclassifier__criterion': ["gini", "entropy"],
'randomforestclassifier__max_features': ['auto', 'sqrt', 'log2']}
clf_opt = RandomizedSearchCV(pipe, param_distributions= param_dist,
scoring='roc_auc', n_jobs=1, cv=3, random_state=rng)
clf_opt.fit(X_train,y_train)
y_pred = clf_opt.predict(X_test)
我为 train_test_split
、RandomForestClassifer
和 RandomizedSearchCV
使用常量 random_state
。但是,如果我 运行 几次,上面代码的结果会略有不同。更具体地说,我的代码中有几个测试单元,这些略有不同的结果导致测试单元失败。我不应该因为使用相同的 random_state
而获得相同的结果吗?我的代码中是否遗漏了在代码的一部分中产生随机性的任何内容?
我通常会回答我自己的问题!我会把它留给有类似问题的其他人:
为了确保避免任何随机性,我定义了一个随机种子。代码如下:
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectKBest
from sklearn.grid_search import RandomizedSearchCV
from sklearn.pipeline import make_pipeline
from scipy.stats import randint as sp_randint
seed = np.random.seed(22)
X_train, X_test, y_train, y_test =
train_test_split(data[features], data['target'])
clf = RandomForestClassifier()
kbest = SelectKBest()
pipe = make_pipeline(kbest,clf)
upLim = X_train.shape[1]
param_dist = {'selectkbest__k':sp_randint(upLim/2,upLim+1),
'randomforestclassifier__n_estimators': sp_randint(5,150),
'randomforestclassifier__max_depth': [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, None],
'randomforestclassifier__criterion': ["gini", "entropy"],
'randomforestclassifier__max_features': ['auto', 'sqrt', 'log2']}
clf_opt = RandomizedSearchCV(pipe, param_distributions= param_dist,
scoring='roc_auc', n_jobs=1, cv=3)
clf_opt.fit(X_train,y_train)
y_pred = clf_opt.predict(X_test)
希望对大家有所帮助!