如何加速或向量化 for 循环?
How to speed up or vectorize a for loop?
我想通过矢量化或使用 Data.table 或其他方法来提高 for 循环的速度。我必须 运行 1,000,000 行的代码,我的代码真的很慢。
该代码是不言自明的。为了以防万一,我在下面做了解释。我已经包含了函数的输入和输出。希望您能帮助我使功能更快。
My 目标 是对向量 "Volume" 进行分类,其中每个分类等于 100 份。向量 "Volume" 包含交易的股票数量。这是它的样子:
head(Volume, n = 60)
[1] 5 3 1 5 3 1 1 1 1 1 1 1 18 1 1 18 2 7 13 2 7 13 3 2 1 1 3 2 1 1 1
[32] 1 6 6 1 1 1 1 1 1 1 1 18 2 1 1 2 1 14 18 2 1 1 2 1 14 1 1 9 5
向量"binIdexVector"与"Volume"等长,包含bin号;即前 100 份的每个元素获得编号 1,接下来的 100 份的每个元素获得编号 2,接下来的 100 份的每个元素获得编号 3,依此类推。这是该向量的样子:
head(binIdexVector, n = 60)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[48] 2 2 3 3 3 3 3 3 3 3 3 3 3
这是我的函数:
#input as a vector
Volume<-c(5L, 3L, 1L, 5L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 1L, 1L,
18L, 2L, 7L, 13L, 2L, 7L, 13L, 3L, 2L, 1L, 1L, 3L, 2L, 1L, 1L,
1L, 1L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 2L, 1L,
1L, 2L, 1L, 14L, 18L, 2L, 1L, 1L, 2L, 1L, 14L, 1L, 1L, 9L, 5L,
2L, 1L, 1L, 1L, 1L, 9L, 5L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 2L, 9L, 9L, 3L, 3L, 1L, 1L,
1L, 1L, 5L, 5L, 8L, 8L, 2L, 1L, 2L, 1L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 9L, 9L, 1L, 1L, 8L, 1L, 8L, 1L, 8L, 8L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L,
1L, 2L, 7L, 1L, 2L, 7L, 1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 30L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
10L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 30L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 7L, 7L, 3L, 1L, 1L, 1L, 4L, 3L, 1L,
1L, 1L, 4L, 25L, 1L, 1L, 25L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L)
binIdexVector <- numeric(length(Volume))
# initialize
binIdex <-1
totalVolume <-0
for(i in seq_len(length(Volume))){
totalVolume <- totalVolume + Volume[i]
if (totalVolume <= 100) {
binIdexVector[i] <- binIdex
} else {
binIdex <- binIdex + 1
binIdexVector[i] <- binIdex
totalVolume <- Volume[i]
}
}
# output:
> dput(binIdexVector)
c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10)
非常感谢您的帮助!
> sessionInfo()
R version 3.1.2 (2014-10-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] tools_3.1.2
Volume<-sample(1:5,500,replace=TRUE)
binLabels<- cumsum(diff(cumsum(Volume) %% 100) <0) + 1
这导致向量 binLabels
,它指示每个数据点属于哪个 bin。每个 bin 将保存所需的数据点数,使得数据点的总和为 100。
向量化困难时可以使用 Rcpp。
library(Rcpp)
cppFunction('
IntegerVector bin(NumericVector Volume, int n) {
IntegerVector binIdexVector(Volume.size());
int binIdex = 1;
double totalVolume =0;
for(int i=0; i<Volume.size(); i++){
totalVolume = totalVolume + Volume[i];
if (totalVolume <= n) {
binIdexVector[i] = binIdex;
} else {
binIdex++;
binIdexVector[i] = binIdex;
totalVolume = Volume[i];
}
}
return binIdexVector;
}')
all.equal(bin(Volume, 100), binIdexVector)
#[1] TRUE
比findInterval(cumsum(Volume), seq(0, sum(Volume), by=100))
快(当然答案不准确)
我想通过矢量化或使用 Data.table 或其他方法来提高 for 循环的速度。我必须 运行 1,000,000 行的代码,我的代码真的很慢。
该代码是不言自明的。为了以防万一,我在下面做了解释。我已经包含了函数的输入和输出。希望您能帮助我使功能更快。
My 目标 是对向量 "Volume" 进行分类,其中每个分类等于 100 份。向量 "Volume" 包含交易的股票数量。这是它的样子:
head(Volume, n = 60)
[1] 5 3 1 5 3 1 1 1 1 1 1 1 18 1 1 18 2 7 13 2 7 13 3 2 1 1 3 2 1 1 1
[32] 1 6 6 1 1 1 1 1 1 1 1 18 2 1 1 2 1 14 18 2 1 1 2 1 14 1 1 9 5
向量"binIdexVector"与"Volume"等长,包含bin号;即前 100 份的每个元素获得编号 1,接下来的 100 份的每个元素获得编号 2,接下来的 100 份的每个元素获得编号 3,依此类推。这是该向量的样子:
head(binIdexVector, n = 60)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[48] 2 2 3 3 3 3 3 3 3 3 3 3 3
这是我的函数:
#input as a vector
Volume<-c(5L, 3L, 1L, 5L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 1L, 1L,
18L, 2L, 7L, 13L, 2L, 7L, 13L, 3L, 2L, 1L, 1L, 3L, 2L, 1L, 1L,
1L, 1L, 6L, 6L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 2L, 1L,
1L, 2L, 1L, 14L, 18L, 2L, 1L, 1L, 2L, 1L, 14L, 1L, 1L, 9L, 5L,
2L, 1L, 1L, 1L, 1L, 9L, 5L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 2L, 9L, 9L, 3L, 3L, 1L, 1L,
1L, 1L, 5L, 5L, 8L, 8L, 2L, 1L, 2L, 1L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 9L, 9L, 1L, 1L, 8L, 1L, 8L, 1L, 8L, 8L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L,
1L, 2L, 7L, 1L, 2L, 7L, 1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 30L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L,
10L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 10L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 30L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 7L, 7L, 3L, 1L, 1L, 1L, 4L, 3L, 1L,
1L, 1L, 4L, 25L, 1L, 1L, 25L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L)
binIdexVector <- numeric(length(Volume))
# initialize
binIdex <-1
totalVolume <-0
for(i in seq_len(length(Volume))){
totalVolume <- totalVolume + Volume[i]
if (totalVolume <= 100) {
binIdexVector[i] <- binIdex
} else {
binIdex <- binIdex + 1
binIdexVector[i] <- binIdex
totalVolume <- Volume[i]
}
}
# output:
> dput(binIdexVector)
c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10)
非常感谢您的帮助!
> sessionInfo()
R version 3.1.2 (2014-10-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] tools_3.1.2
Volume<-sample(1:5,500,replace=TRUE)
binLabels<- cumsum(diff(cumsum(Volume) %% 100) <0) + 1
这导致向量 binLabels
,它指示每个数据点属于哪个 bin。每个 bin 将保存所需的数据点数,使得数据点的总和为 100。
向量化困难时可以使用 Rcpp。
library(Rcpp)
cppFunction('
IntegerVector bin(NumericVector Volume, int n) {
IntegerVector binIdexVector(Volume.size());
int binIdex = 1;
double totalVolume =0;
for(int i=0; i<Volume.size(); i++){
totalVolume = totalVolume + Volume[i];
if (totalVolume <= n) {
binIdexVector[i] = binIdex;
} else {
binIdex++;
binIdexVector[i] = binIdex;
totalVolume = Volume[i];
}
}
return binIdexVector;
}')
all.equal(bin(Volume, 100), binIdexVector)
#[1] TRUE
比findInterval(cumsum(Volume), seq(0, sum(Volume), by=100))
快(当然答案不准确)