加速 Pandas cummin/cummax

Speed up Pandas cummin/cummax

Pandas cummin and cummax 函数对于我有很多组的用例来说似乎真的很慢。我怎样才能加快他们的速度?

更新

import pandas as pd
import numpy as np

from collections import defaultdict

def cummax(g, v):
    df1 = pd.DataFrame(g, columns=['group'])
    df2 = pd.DataFrame(v)
    df = pd.concat([df1, df2], axis=1)

    result = df.groupby('group').cummax()
    result = result.values
    return result


def transform(g, v):
    df1 = pd.DataFrame(g, columns=['group'])
    df2 = pd.DataFrame(v)
    df = pd.concat([df1, df2], axis=1)

    result = df.groupby('group').transform(lambda x: x.cummax())
    result = result.values
    return result

def itertuples(g, v):
    df1 = pd.DataFrame(g, columns=['group'])
    df2 = pd.DataFrame(v)
    df = pd.concat([df1, df2], axis=1)

    d = defaultdict(list)

    result = [np.nan] * len(g)

    def d_(g, v):
        d[g].append(v)
        if len(d[g]) > 1:
            d[g][-1] = tuple(max(a,b) for (a,b) in zip(d[g][-2], d[g][-1]))
        return d[g][-1]

    for row in df.itertuples(index=True):
        index = row[0]
        result[index] = d_(row[1], row[2:])

    result = np.asarray(result)
    return result

def numpy(g, v):
    d = defaultdict(list)

    result = [np.nan] * len(g)

    def d_(g, v):
        d[g].append(v)
        if len(d[g]) > 1:
            d[g][-1] = np.maximum(d[g][-2], d[g][-1])
        return d[g][-1]

    for i in range(len(g)):
        result[i] = d_(g[i], v[i])

    result = np.asarray(result)
    return result



LENGTH = 100000
g = np.random.randint(low=0, high=LENGTH/2, size=LENGTH)
v = np.random.rand(LENGTH, 40)

%timeit r1 = cummax(g, v)
%timeit r2 = transform(g, v)
%timeit r3 = itertuples(g, v)
%timeit r4 = numpy(g, v)

给予

1 loop, best of 3: 22.5 s per loop
1 loop, best of 3: 18.4 s per loop
1 loop, best of 3: 1.56 s per loop
1 loop, best of 3: 325 ms per loop

您对我如何改进我的代码有任何进一步的建议吗?

import pandas as pd
import numpy as np

LENGTH = 100000

df = pd.DataFrame(
    np.random.randint(low=0, high=LENGTH/2, size=(LENGTH,2)),
    columns=['group', 'value'])

df.groupby('group').cummax()

我们将使用 defaultdict,其中默认值为 -np.inf,因为我将采用最大值并且我想要一个所有值都大于的默认值。

解决方案

给定一组数组 g 和要累积最大值的值 v

def pir1(g, v):
    d = defaultdict(lambda: -np.inf)
    result = np.empty(len(g))

    def d_(g, v):
        d[g] = max(d[g], v)
        return d[g]

    for i in range(len(g)):
        result[i] = d_(g[i], v[i])

    return result

示范[​​=49=]
LENGTH = 100000
g = np.random.randint(low=0, high=LENGTH/2, size=LENGTH)
v = np.random.rand(LENGTH)

准确性

vm = pd.DataFrame(dict(group=g, value=v)).groupby('group').value.cummax()
vm.eq(pir1(g, v)).all()

True



深入探讨

与 Divakar 的回答比较

头条图表

代码
我对 Divakar 的函数进行了一些修改以使其准确。

%%cython
import numpy as np
from collections import defaultdict

# this is a cythonized version of the next function
def pir1(g, v):
    d = defaultdict(lambda: -np.inf)
    result = np.empty(len(g))

    def d_(g, v):
        d[g] = max(d[g], v)
        return d[g]

    for i in range(len(g)):
        result[i] = d_(g[i], v[i])

    return result

def pir2(g, v):
    d = defaultdict(lambda: -np.inf)
    result = np.empty(len(g))

    def d_(g, v):
        d[g] = max(d[g], v)
        return d[g]

    for i in range(len(g)):
        result[i] = d_(g[i], v[i])

    return result

def argsort_unique(idx):
    # Original idea :  
    n = idx.size
    sidx = np.empty(n,dtype=int)
    sidx[idx] = np.arange(n)
    return sidx

def div1(groupby, value): 
    sidx = np.argsort(groupby,kind='mergesort')
    sorted_groupby, sorted_value = groupby[sidx], value[sidx]

    # Get shifts to be used for shifting each group
    mx = sorted_value.max() + 1
    shifts = sorted_groupby * mx

    # Shift and get max accumlate along value col. 
    # Those shifts helping out in keeping cummulative max within each group.
    group_cummaxed = np.maximum.accumulate(shifts + sorted_value) - shifts
    return group_cummaxed[argsort_unique(sidx)]

def div2(groupby, value):
    sidx = np.argsort(groupby, kind='mergesort')
    sorted_groupby, sorted_value = groupby[sidx], value[sidx]
    # factorize groups to integers
    sorted_groupby = np.append(
        0, sorted_groupby[1:] != sorted_groupby[:-1]).cumsum()

    # Get shifts to be used for shifting each group
    mx = sorted_value.max() + 1
    shifts = (sorted_groupby - sorted_groupby.min()) * mx 

    # Shift and get max accumlate along value col. 
    # Those shifts helping out in keeping cummulative max within each group.
    group_cummaxed = np.maximum.accumulate(shifts + sorted_value) - shifts
    return group_cummaxed[argsort_unique(sidx)]

备注:

  • 有必要对 Divakar 解中的组进行因式分解以对其进行概括

准确性

整数组
在基于整数的组中,div1div2 产生相同的结果

np.isclose(div1(g, v), pir1(g, v)).all()

True

np.isclose(div2(g, v), pir1(g, v)).all()

True

普通组
基于字符串和浮点数的组 div1 变得不准确但很容易修复

g = g / 1000000

np.isclose(div1(g, v), pir1(g, v)).all()

False

np.isclose(div2(g, v), pir1(g, v)).all()

True

时间测试

results = pd.DataFrame(
    index=pd.Index(['pir1', 'pir2', 'div1', 'div2'], name='method'),
    columns=pd.Index(['Large', 'Medium', 'Small'], name='group size'))

size_map = dict(Large=100, Medium=10, Small=1)

from timeit import timeit

for i in results.index:
    for j in results.columns:
        results.set_value(
            i, j,
            timeit(
                '{}(g // size_map[j], v)'.format(i),
                'from __main__ import {}, size_map, g, v, j'.format(i),
                number=100
            )
        )

results

results.T.plot.barh()

提议的方法

让我们为 table 带来一些 NumPy 魔法!好吧,我们将利用 np.maximum.accumulate.

说明

要了解 maximum.accumulate 如何帮助我们,假设我们按顺序排列了这些组。

让我们考虑一个样本 grouby :

grouby column : [0, 0, 0, 1, 1, 2, 2, 2, 2, 2]

让我们考虑一个示例值:

value column  : [3, 1, 4, 1, 3, 3, 1, 5, 2, 4]

仅在 value 上使用 maximum.accumulate 不会给我们想要的输出,因为我们只需要在每个组内进行这些累加。为此,一个技巧是将每个组与其之前的组相抵消。

可能没有什么方法可以进行抵消工作。一种简单的方法是用 value + 1 的最大偏移量来偏移每个组。对于示例,该偏移量将为 6。因此,对于第二组,我们将添加 6,第三组添加 12,依此类推。因此,修改后的 value 将是 -

value column  : [3, 1, 4, 7, 9, 15, 13, 17, 14, 16]

现在,我们可以使用maximum.accumulate,累积将限制在每个组内-

value cummaxed: [3, 3, 4, 7, 9, 15, 15, 17, 17, 17])

要返回原始值,请减去之前添加的偏移量。

value cummaxed: [3, 3, 4, 1, 3, 3, 3, 5, 5, 5])

这是我们想要的结果!

一开始,我们假设分组是连续的。要获取该格式的数据,我们将使用 np.argsort(groupby,kind='mergesort') 获取排序索引,以便它保持相同数字的顺序,然后使用这些索引索引到 groupby 列。

为了解释负 groupby 元素,我们只需要偏移 max() - min() 而不是 max().

因此,实现看起来像这样 -

def argsort_unique(idx):
    # Original idea :  
    n = idx.size
    sidx = np.empty(n,dtype=int)
    sidx[idx] = np.arange(n)
    return sidx

def numpy_cummmax(groupby, value, factorize_groupby=0): 
    # Inputs : 1D arrays.

    # Get sorted indices keeping the order. Sort groupby and value cols.
    sidx = np.argsort(groupby,kind='mergesort')
    sorted_groupby, sorted_value = groupby[sidx], value[sidx]

    if factorize_groupby==1:
        sf = np.concatenate(([0], np.flatnonzero(sorted_groupby[1:] != \
                            sorted_groupby[:-1])+1, [sorted_groupby.size] ))
        sorted_groupby = np.repeat(np.arange(sf.size-1), sf[1:] - sf[:-1])

    # Get shifts to be used for shifting each group
    mx = sorted_groupby.max()-sorted_groupby.min()+1
    shifts = sorted_groupby*mx

    # Shift and get max accumlate along value col. 
    # Those shifts helping out in keeping cummulative max within each group.
    group_cummaxed = np.maximum.accumulate(shifts + sorted_value) - shifts
    return group_cummaxed[argsort_unique(sidx)]

运行时测试和验证

验证

1) Groupby 作为整数:

In [58]: # Setup with groupby as ints
    ...: LENGTH = 1000
    ...: g = np.random.randint(low=0, high=LENGTH/2, size=LENGTH)
    ...: v = np.random.rand(LENGTH)
    ...: 

In [59]: df = pd.DataFrame(np.column_stack((g,v)),columns=['group', 'value'])

In [60]: # Verify results
    ...: out1 = df.groupby('group').cummax()
    ...: out2 = numpy_cummmax(df['group'].values, df['value'].values)
    ...: print np.allclose(out1.values.ravel(), out2, atol=1e-5)
    ...: 
True

2) Groupby 作为浮点数:

In [10]: # Setup with groupby as floats
    ...: LENGTH = 100000
    ...: df = pd.DataFrame(np.random.randint(0,LENGTH//2,(LENGTH,2))/10.0, \
    ...:                             columns=['group', 'value'])

In [18]: # Verify results
    ...: out1 = df.groupby('group').cummax()
    ...: out2 = numpy_cummmax(df['group'].values, df['value'].values, factorize_groupby=1)
    ...: print np.allclose(out1.values.ravel(), out2, atol=1e-5)
    ...: 
True

计时 -

1) Groupby as ints(与问题中用于计时的设置相同):

In [24]: LENGTH = 100000
    ...: g = np.random.randint(0,LENGTH//2,(LENGTH))/10.0
    ...: v = np.random.rand(LENGTH)
    ...: 

In [25]: %timeit numpy(g, v) # Best solution from posted question
1 loops, best of 3: 373 ms per loop

In [26]: %timeit pir1(g, v) # @piRSquared's solution-1
1 loops, best of 3: 165 ms per loop

In [27]: %timeit pir2(g, v) # @piRSquared's solution-2
1 loops, best of 3: 157 ms per loop

In [28]: %timeit numpy_cummmax(g, v)
100 loops, best of 3: 18.3 ms per loop

2) Groupby 作为浮点数:

In [29]: LENGTH = 100000
    ...: g = np.random.randint(0,LENGTH//2,(LENGTH))/10.0
    ...: v = np.random.rand(LENGTH)
    ...: 

In [30]: %timeit pir1(g, v) # @piRSquared's solution-1
1 loops, best of 3: 157 ms per loop

In [31]: %timeit pir2(g, v) # @piRSquared's solution-2
1 loops, best of 3: 156 ms per loop

In [32]: %timeit numpy_cummmax(g, v, factorize_groupby=1)
10 loops, best of 3: 20.8 ms per loop

In [34]: np.allclose(pir1(g, v),numpy_cummmax(g, v, factorize_groupby=1),atol=1e-5)
Out[34]: True