如何根据用户输入(只有一条记录)创建用于预测的虚拟变量?

How to do create dummy variables for prediction from user input (only one record)?

我正在尝试创建一个用于预测航空公司延误的 Web 应用程序。我已经在我的电脑上离线训练了我的模型,现在我正在尝试制作一个 Flask 应用程序来根据用户输入进行预测。为简单起见,假设我的模型有 3 个分类变量:UNIQUE_CARRIER、ORIGIN 和 DESTINATION。在训练时,我使用 pandas:

创建了所有 3 个虚拟变量
df = pd.concat([df, pd.get_dummies(df['UNIQUE_CARRIER'], drop_first=True, prefix="UNIQUE_CARRIER")], axis=1)
df = pd.concat([df, pd.get_dummies(df['ORIGIN'], drop_first=True, prefix="ORIGIN")], axis=1)
df = pd.concat([df, pd.get_dummies(df['DEST'], drop_first=True, prefix="DEST")], axis=1)
df.drop(['UNIQUE_CARRIER', 'ORIGIN', 'DEST'], axis=1, inplace=True)

所以现在我的特征向量是 297 长(假设我的数据中有 100 个不同的独特承运人和 100 个不同的机场)。我使用 pickle 保存了我的模型,现在正尝试根据用户输入进行预测。现在用户输入的形式是 3 个变量(起点、终点、承运人)。

显然我不能为每个用户输入使用 pd.get_dummies(因为所有三个字段只有 1 个唯一值)。将用户输入转换为我的模型的特征向量的最有效方法是什么?

由于您使用的是 pandas 虚拟变量,因此是密集向量,因此创建新向量的一个好方法是创建一个 terms:vector_index 的字典,然后根据它填充一个零向量,大致如下:

index_dict = dict(zip(df.columns,range(df.shape[1])))

现在当您有新航班时:

new_vector = np.zeroes(297)
try:
    new_vector[index_dict[origin]] = 1
except:
    pass
try:
    new_vector[index_dict[destination]] = 1
except:
    pass
try:
    new_vector[index_dict[carrier]] = 1
except:
    pass