processing.org 中的简单图像识别
Simple Image Recognition in processing.org
我正在尝试编写最简单的图像比较函数。
这个想法是有一个目标图像和 n 个不同图像的集合。
目标是选择与目标图像最相似的图像。
到目前为止,我的方法包括在调整大小后的图像中定义像素与像素之间的欧氏 HSB 距离,并且一直在尝试执行 PImage
函数以 returns 获胜图像。我已经编写了一个 float
函数来对图像列表从赢家到输家进行排名,但我想跳过这一步以使过程更加简洁。
问题在 PImage difference(PImage){
函数,程序在行上输出错误:
float x1 = brightness(imageKey.pixels[i]);
错误是 ArrayIndexOutOfBoundsException
完整代码如下:
//CLICK ON S TO SAVE FRAMES TO FOLDER
int series = 50; //
PImage[] collection = new PImage[series];
PImage imageKey,imageKey2, imageKeyHUE, imageKeySUM, imageKeySAT; //target image alias with ready operations
int imageWidth = 800;
int leftAlign = 850 ;
void setup()
{
size(1200,600);
background(255);
frameRate(random(1,10.0));
for ( int i = 0; i< collection.length; i++ )
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
}
//_____________________________________________TARGET IMAGE AND NAME TEXT
textSize(10);
fill(0);
text("target image", leftAlign, 220);
textSize(15);
text("central london", leftAlign, 240);
text("comparison methods", leftAlign, 290);
//_____________________________________________________________________BUTTONS
imageKey = loadImage("Image_0.jpg");
imageKey.resize(240, 180);
image(imageKey, leftAlign,25);
imageKeySAT= loadImage("Image_0.jpg");
imageKeySAT.resize(60,60);
imageKeySAT = saturation(imageKeySAT);
image(imageKeySAT, leftAlign+140,300);
imageKeySUM = loadImage("Image_0.jpg");
imageKeySUM.resize(60,60);
imageKeySUM = sum(imageKeySUM);
image(imageKeySUM, leftAlign+70,300);
imageKeyHUE = loadImage("Image_0.jpg");
imageKeyHUE.resize(60,60);
imageKeyHUE = hue(imageKeyHUE);
image(imageKeyHUE, leftAlign,300);
textSize(20);
text("CLICK HERE TO", leftAlign, 430);
text("STOP AT WINNER", leftAlign, 450);
}
void draw()
{
//______________________________________________SHOW IMAGES ARRAY
image(collection[int(random(0,series))],0,0);
//______________________________________________HISTOGRAMS
histogramhue();
histogramsat();
histogrambright();
//______________________________________________SUM METHOD
//float Vector_Approach(PImage sumSatin){
//}
}
void keyPressed()
{
if(key=='s') saveFrame("images/image-######.jpg");
}
PImage difference(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
imageKey.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for(int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float x1 = brightness(imageKey.pixels[i]);
float b0 = brightness(satin.pixels[i]);
// float y1 = brightness(satin.pixels[i+1]);
float value = x1-b0;
satout.pixels[i] = color(0,0,value);
}
satout.updatePixels();
return satout;
}
void mouseReleased(){
//______________________________________________BUTTON OVER
for ( int i = 0; i< collection.length; i++ )
if (mouseX > leftAlign && mouseX < (leftAlign + 60) && mouseY > 300 && mouseY < 360){
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = hue(collection[i]); histogramhue();
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by hue", leftAlign, 380);
} else if (mouseX > (leftAlign + 70) && mouseX < (leftAlign + 130) && mouseY > 300 && mouseY < 360)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = sum(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by sum", leftAlign, 380);
}else if (mouseX > (leftAlign + 140) && mouseX < (leftAlign + 200) && mouseY > 300 && mouseY < 360)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = saturation(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by saturation", leftAlign, 380);
}else if (mouseX > leftAlign && mouseX < 1200 && mouseY > 340 && mouseY < 600)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = difference(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("WINNER IMAGE!!!!", leftAlign, 380);
}else{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
}
}
/* HSB PImage Methods */
//HUE -------> /** CHOSEN METHOD**/
//SATURATION -------> /** CHOSEN METHOD**/
//SUM -------> /** CHOSEN METHOD**/
PImage hue(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, HSB);
satout.loadPixels();
for (int j = 0; j < satout.pixels.length; j++)
{
satout.pixels[j] = color(hue(satin.pixels[j]),255,255);
}
satout.updatePixels();
return satout;
}
PImage saturation(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for (int j = 0; j < satout.pixels.length; j++)
{
satout.pixels[j] = color(saturation(satin.pixels[j]));
}
satout.updatePixels();
//colorMode(RGB);
return satout;
}
PImage sum(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for(int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float b0 = brightness(satin.pixels[i]);
float x1 = brightness(satin.pixels[i-1]);
float y1 = brightness(satin.pixels[i-imageWidth]);
float xdiff = b0-x1;
float ydiff = b0-y1;
float value = (510 + xdiff + ydiff)/3;
satout.pixels[i] = color(0,0,value);
}
satout.updatePixels();
return satout;
}
//REFERENCE HISTOGRAM TAKEN FROM A PROGRAMMING HANDBOOK FOR VISUAL DESIGNERS AND ARTISTS BY BEN FRY ET AL
void histogramhue(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
// Calculate the histogram
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int hue = int(hue(get(i, j)));
hist[hue]++;
}
}
int histMax = max(hist);
stroke(255,250); strokeWeight(5);
// Draw half of the histogram (skip every second value)
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
void histogramsat(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int sat = int(saturation(get(i, j)));
hist[sat]++;
}
}
int histMax = max(hist);
stroke(255,150);strokeWeight(10);
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
void histogrambright(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int bright = int(brightness(get(i, j)));
hist[bright]++;
}
}
int histMax = max(hist);
stroke(255, 150);strokeWeight(20);
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
单独来看,您的功能似乎确实有效:
PImage imageKey,testImage;
int imageWidth = 800;
int imageHeight = 600;
void setup(){
size(1600,600);
//fake imageKey
imageKey = getNoise(imageWidth,imageHeight);
//fake test image
testImage = getNoise(imageWidth,imageHeight);
image(testImage,0,0);
image(difference(testImage),800,0);
}
PImage getNoise(int width,int height){
PImage out = createImage(width,height,RGB);
for(int i = 0 ; i < out.pixels.length; i++)
out.pixels[i] = color(random(255),random(255),random(255));
out.updatePixels();
return out;
}
PImage difference(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
imageKey.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for (int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float x1 = brightness(imageKey.pixels[i]);
float b0 = brightness(satin.pixels[i]);
// float y1 = brightness(satin.pixels[i+1]);
float value = x1-b0;
//println(i,x1,b0,x1-b0,value);
satout.pixels[i] = color(0, 0, value);
}
satout.updatePixels();
return satout;
}
我无法测试您的实际设置,因为我无法访问您的图像,但 ArrayIndexOutOfBoundsException
可能是因为您的 i 计数器超出了 imageKey
中的像素数。您可以通过检查 i < imageKey.pixels.length
来测试这一点。我的猜测是图像尺寸不同,因此像素数不同。
其他略有进展的笔记off-topic:
- 您的
difference()
函数与 imageKey
和 imageWidth
变量紧密耦合。您可能希望使您的函数松散耦合,以便它们可以在其他上下文中轻松重用。您可以首先使这两个变量成为函数 的额外 parameters/arguments
- 您可能还想查看颜色之间的欧氏距离(在感知颜色 space 中,例如 Lab*)。看看 this answer。即使它是一个 OpenFrameworks 答案,它应该很容易适应 Processing 的
color
和 PVector
类型。
我正在尝试编写最简单的图像比较函数。 这个想法是有一个目标图像和 n 个不同图像的集合。
目标是选择与目标图像最相似的图像。
到目前为止,我的方法包括在调整大小后的图像中定义像素与像素之间的欧氏 HSB 距离,并且一直在尝试执行 PImage
函数以 returns 获胜图像。我已经编写了一个 float
函数来对图像列表从赢家到输家进行排名,但我想跳过这一步以使过程更加简洁。
问题在 PImage difference(PImage){
函数,程序在行上输出错误:
float x1 = brightness(imageKey.pixels[i]);
错误是 ArrayIndexOutOfBoundsException
完整代码如下:
//CLICK ON S TO SAVE FRAMES TO FOLDER
int series = 50; //
PImage[] collection = new PImage[series];
PImage imageKey,imageKey2, imageKeyHUE, imageKeySUM, imageKeySAT; //target image alias with ready operations
int imageWidth = 800;
int leftAlign = 850 ;
void setup()
{
size(1200,600);
background(255);
frameRate(random(1,10.0));
for ( int i = 0; i< collection.length; i++ )
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
}
//_____________________________________________TARGET IMAGE AND NAME TEXT
textSize(10);
fill(0);
text("target image", leftAlign, 220);
textSize(15);
text("central london", leftAlign, 240);
text("comparison methods", leftAlign, 290);
//_____________________________________________________________________BUTTONS
imageKey = loadImage("Image_0.jpg");
imageKey.resize(240, 180);
image(imageKey, leftAlign,25);
imageKeySAT= loadImage("Image_0.jpg");
imageKeySAT.resize(60,60);
imageKeySAT = saturation(imageKeySAT);
image(imageKeySAT, leftAlign+140,300);
imageKeySUM = loadImage("Image_0.jpg");
imageKeySUM.resize(60,60);
imageKeySUM = sum(imageKeySUM);
image(imageKeySUM, leftAlign+70,300);
imageKeyHUE = loadImage("Image_0.jpg");
imageKeyHUE.resize(60,60);
imageKeyHUE = hue(imageKeyHUE);
image(imageKeyHUE, leftAlign,300);
textSize(20);
text("CLICK HERE TO", leftAlign, 430);
text("STOP AT WINNER", leftAlign, 450);
}
void draw()
{
//______________________________________________SHOW IMAGES ARRAY
image(collection[int(random(0,series))],0,0);
//______________________________________________HISTOGRAMS
histogramhue();
histogramsat();
histogrambright();
//______________________________________________SUM METHOD
//float Vector_Approach(PImage sumSatin){
//}
}
void keyPressed()
{
if(key=='s') saveFrame("images/image-######.jpg");
}
PImage difference(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
imageKey.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for(int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float x1 = brightness(imageKey.pixels[i]);
float b0 = brightness(satin.pixels[i]);
// float y1 = brightness(satin.pixels[i+1]);
float value = x1-b0;
satout.pixels[i] = color(0,0,value);
}
satout.updatePixels();
return satout;
}
void mouseReleased(){
//______________________________________________BUTTON OVER
for ( int i = 0; i< collection.length; i++ )
if (mouseX > leftAlign && mouseX < (leftAlign + 60) && mouseY > 300 && mouseY < 360){
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = hue(collection[i]); histogramhue();
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by hue", leftAlign, 380);
} else if (mouseX > (leftAlign + 70) && mouseX < (leftAlign + 130) && mouseY > 300 && mouseY < 360)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = sum(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by sum", leftAlign, 380);
}else if (mouseX > (leftAlign + 140) && mouseX < (leftAlign + 200) && mouseY > 300 && mouseY < 360)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = saturation(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("comparison by saturation", leftAlign, 380);
}else if (mouseX > leftAlign && mouseX < 1200 && mouseY > 340 && mouseY < 600)
{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
collection[i] = difference(collection[i]);
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
textSize(10);text("WINNER IMAGE!!!!", leftAlign, 380);
}else{
collection[i] = loadImage( "Image_"+ i + ".jpg" );
noStroke(); fill(255); rect(leftAlign,360,200,40); fill(0);
}
}
/* HSB PImage Methods */
//HUE -------> /** CHOSEN METHOD**/
//SATURATION -------> /** CHOSEN METHOD**/
//SUM -------> /** CHOSEN METHOD**/
PImage hue(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, HSB);
satout.loadPixels();
for (int j = 0; j < satout.pixels.length; j++)
{
satout.pixels[j] = color(hue(satin.pixels[j]),255,255);
}
satout.updatePixels();
return satout;
}
PImage saturation(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for (int j = 0; j < satout.pixels.length; j++)
{
satout.pixels[j] = color(saturation(satin.pixels[j]));
}
satout.updatePixels();
//colorMode(RGB);
return satout;
}
PImage sum(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for(int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float b0 = brightness(satin.pixels[i]);
float x1 = brightness(satin.pixels[i-1]);
float y1 = brightness(satin.pixels[i-imageWidth]);
float xdiff = b0-x1;
float ydiff = b0-y1;
float value = (510 + xdiff + ydiff)/3;
satout.pixels[i] = color(0,0,value);
}
satout.updatePixels();
return satout;
}
//REFERENCE HISTOGRAM TAKEN FROM A PROGRAMMING HANDBOOK FOR VISUAL DESIGNERS AND ARTISTS BY BEN FRY ET AL
void histogramhue(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
// Calculate the histogram
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int hue = int(hue(get(i, j)));
hist[hue]++;
}
}
int histMax = max(hist);
stroke(255,250); strokeWeight(5);
// Draw half of the histogram (skip every second value)
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
void histogramsat(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int sat = int(saturation(get(i, j)));
hist[sat]++;
}
}
int histMax = max(hist);
stroke(255,150);strokeWeight(10);
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
void histogrambright(){
PImage img = loadImage("Image_0.jpg");
int[] hist = new int[600];
for (int i = 0; i < img.width; i++) {
for (int j = 0; j < img.height; j++) {
int bright = int(brightness(get(i, j)));
hist[bright]++;
}
}
int histMax = max(hist);
stroke(255, 150);strokeWeight(20);
for (int i = 0; i < img.width; i += 20) {
int which = int(map(i, 0, img.width, 0, 255));
int y = int(map(hist[which], 0, histMax, img.height, 0));
line(i, img.height, i, y);
}}
单独来看,您的功能似乎确实有效:
PImage imageKey,testImage;
int imageWidth = 800;
int imageHeight = 600;
void setup(){
size(1600,600);
//fake imageKey
imageKey = getNoise(imageWidth,imageHeight);
//fake test image
testImage = getNoise(imageWidth,imageHeight);
image(testImage,0,0);
image(difference(testImage),800,0);
}
PImage getNoise(int width,int height){
PImage out = createImage(width,height,RGB);
for(int i = 0 ; i < out.pixels.length; i++)
out.pixels[i] = color(random(255),random(255),random(255));
out.updatePixels();
return out;
}
PImage difference(PImage satin)
{
colorMode(HSB);
satin.loadPixels();
imageKey.loadPixels();
PImage satout = createImage(satin.width, satin.height, RGB);
satout.loadPixels();
for (int i = imageWidth; i<satout.pixels.length-imageWidth; i++)
{
float x1 = brightness(imageKey.pixels[i]);
float b0 = brightness(satin.pixels[i]);
// float y1 = brightness(satin.pixels[i+1]);
float value = x1-b0;
//println(i,x1,b0,x1-b0,value);
satout.pixels[i] = color(0, 0, value);
}
satout.updatePixels();
return satout;
}
我无法测试您的实际设置,因为我无法访问您的图像,但 ArrayIndexOutOfBoundsException
可能是因为您的 i 计数器超出了 imageKey
中的像素数。您可以通过检查 i < imageKey.pixels.length
来测试这一点。我的猜测是图像尺寸不同,因此像素数不同。
其他略有进展的笔记off-topic:
- 您的
difference()
函数与imageKey
和imageWidth
变量紧密耦合。您可能希望使您的函数松散耦合,以便它们可以在其他上下文中轻松重用。您可以首先使这两个变量成为函数 的额外 parameters/arguments
- 您可能还想查看颜色之间的欧氏距离(在感知颜色 space 中,例如 Lab*)。看看 this answer。即使它是一个 OpenFrameworks 答案,它应该很容易适应 Processing 的
color
和PVector
类型。