CUDA C 在双打上使用单精度触发器
CUDA C using single precision flop on doubles
问题
在 CUDA C 的一个项目中,我遇到了有关单精度和双精度浮点运算的意外行为。在项目中,我首先在一个内核中用数字填充数组,然后在另一个内核中对这些数字进行一些计算。所有变量和数组都是双精度的,所以我不希望发生任何单精度浮点运算。但是,如果我使用 NVPROF 分析程序的可执行文件,它表明执行了单精度操作。这怎么可能?
最小、完整且可验证的示例
这是最小的程序,它在我的体系结构上显示了这种行为:(断言和错误捕获已被排除在外)。我使用的是 Nvidia Tesla k40 显卡。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define Nx 10
#define Ny 10
#define RANDOM double(0.236954587566)
__global__ void test(double *array, size_t pitch){
double rho, u;
int x = threadIdx.x + blockDim.x*blockIdx.x;
int y = threadIdx.y + blockDim.y*blockIdx.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx && y < Ny){
rho = array[idx];
u = array[idx+1]/rho;
array[idx] = rho*u;
}
}
__global__ void fill(double *array, size_t pitch){
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx || y < Ny){
array[idx] = RANDOM*idx;
array[idx + 1] = idx*idx*RANDOM;
}
}
int main(int argc, char* argv[]) {
double *d_array;
size_t pitch;
cudaMallocPitch((void **) &d_array, &pitch, 2*Nx*sizeof(double), Ny);
dim3 threadDistribution = dim3(8,8);
dim3 blockDistribution = dim3( (Nx + threadDistribution.x - 1) / (threadDistribution.x), (Ny + threadDistribution.y) / (threadDistribution.y));
fill <<< blockDistribution, threadDistribution >>> (d_array, pitch);
cudaDeviceSynchronize();
test <<< blockDistribution, threadDistribution >>> (d_array, pitch);
return 0;
}
NVPROF 的输出(经过编辑以使其更具可读性,如果您需要完整的输出,请在评论中询问):
....
Device "Tesla K40c (0)"
Kernel: test(double*, unsigned long)
Metric Name Min Max Avg
flop_count_sp 198 198 198
flop_count_sp_add 0 0 0
flop_count_sp_mul 0 0 0
flop_count_sp_fma 99 99 99
flop_count_sp_special 102 102 102
flop_count_dp 1214 1214 1214
flop_count_dp_add 0 0 0
flop_count_dp_mul 204 204 204
flop_count_dp_fma 505 505 505
到目前为止我发现了什么
我发现如果我删除第16行的除法:
u = array[idx+1]/rho;
==>
u = array[idx+1];
输出符合预期:执行了零次单精度运算和恰好 100 次双精度运算。有谁知道为什么除法会导致程序使用单精度触发器和 10 倍以上的双精度浮点运算?
我也尝试过使用内部函数 (__ddiv_rn),但这并没有解决问题。
非常感谢!
编辑 - 工作解决方案
尽管我仍然没有弄清楚为什么它使用单精度,但我已经找到了这个问题的 'solution',感谢@EOF。
用 rho 的倒数代替乘法来完成这项工作:
u = array[idx+1]/rho;
==>
u = array[idx+1]*__drcp_rn(rho);
正如其他人指出的那样,CUDA 设备在硬件中没有浮点除法指令。相反,它们从分母的倒数的初始近似值开始,由单精度特殊功能单元提供。它与分子的乘积然后被迭代细化,直到它与机器精度内的分数相匹配。
即使是 __ddiv_rn()
内在函数也被 ptxas 编译成这个指令序列,所以它的使用没有区别。
您可以通过使用 cuobjdump -sass
自己检查代码来获得更深入的了解,尽管除了 bare list of instructions.
之外没有可用的着色器程序集官方文档,这使得这变得困难
我将使用以下bare-bones除法内核作为示例:
__global__ void div(double x, double y, double *z) {
*z = x / y;
}
针对计算能力为 3.5 的设备编译为以下着色器程序集:
Function : _Z3divddPd
.headerflags @"EF_CUDA_SM35 EF_CUDA_PTX_SM(EF_CUDA_SM35)"
/* 0x08a0109c10801000 */
/*0008*/ MOV R1, c[0x0][0x44]; /* 0x64c03c00089c0006 */
/*0010*/ MOV R0, c[0x0][0x14c]; /* 0x64c03c00299c0002 */
/*0018*/ MOV32I R2, 0x1; /* 0x74000000009fc00a */
/*0020*/ MOV R8, c[0x0][0x148]; /* 0x64c03c00291c0022 */
/*0028*/ MOV R9, c[0x0][0x14c]; /* 0x64c03c00299c0026 */
/*0030*/ MUFU.RCP64H R3, R0; /* 0x84000000031c000e */
/*0038*/ MOV32I R0, 0x35b7333; /* 0x7401adb9999fc002 */
/* 0x08a080a080a4a4a4 */
/*0048*/ DFMA R4, -R8, R2, c[0x2][0x0]; /* 0x9b880840001c2012 */
/*0050*/ DFMA R4, R4, R4, R4; /* 0xdb801000021c1012 */
/*0058*/ DFMA R4, R4, R2, R2; /* 0xdb800800011c1012 */
/*0060*/ DMUL R6, R4, c[0x0][0x140]; /* 0x64000000281c101a */
/*0068*/ FSETP.GE.AND P0, PT, R0, |c[0x0][0x144]|, PT; /* 0x5db09c00289c001e */
/*0070*/ DFMA R8, -R8, R6, c[0x0][0x140]; /* 0x9b881800281c2022 */
/*0078*/ MOV R2, c[0x0][0x150]; /* 0x64c03c002a1c000a */
/* 0x0880acb0a0ac8010 */
/*0088*/ MOV R3, c[0x0][0x154]; /* 0x64c03c002a9c000e */
/*0090*/ DFMA R4, R8, R4, R6; /* 0xdb801800021c2012 */
/*0098*/ @P0 BRA 0xb8; /* 0x120000000c00003c */
/*00a0*/ FFMA R0, RZ, c[0x0][0x14c], R5; /* 0x4c001400299ffc02 */
/*00a8*/ FSETP.GT.AND P0, PT, |R0|, c[0x2][0x8], PT; /* 0x5da01c40011c021e */
/*00b0*/ @P0 BRA 0xe8; /* 0x120000001800003c */
/*00b8*/ MOV R4, c[0x0][0x140]; /* 0x64c03c00281c0012 */
/* 0x08a1b810b8008010 */
/*00c8*/ MOV R5, c[0x0][0x144]; /* 0x64c03c00289c0016 */
/*00d0*/ MOV R7, c[0x0][0x14c]; /* 0x64c03c00299c001e */
/*00d8*/ MOV R6, c[0x0][0x148]; /* 0x64c03c00291c001a */
/*00e0*/ CAL 0xf8; /* 0x1300000008000100 */
/*00e8*/ ST.E.64 [R2], R4; /* 0xe5800000001c0810 */
/*00f0*/ EXIT; /* 0x18000000001c003c */
/*00f8*/ LOP32I.AND R0, R7, 0x40000000; /* 0x20200000001c1c00 */
/* 0x08a08010a010b010 */
/*0108*/ MOV32I R15, 0x1ff00000; /* 0x740ff800001fc03e */
/*0110*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0xc], PT; /* 0x5b101c40019c001e */
/*0118*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0120*/ SEL R9, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c26 */
/*0128*/ MOV32I R12, 0x1; /* 0x74000000009fc032 */
/*0130*/ DMUL R10, R8, R6; /* 0xe4000000031c202a */
/*0138*/ LOP32I.AND R0, R5, 0x7f800000; /* 0x203fc000001c1400 */
/* 0x08a0108ca01080a0 */
/*0148*/ MUFU.RCP64H R13, R11; /* 0x84000000031c2c36 */
/*0150*/ DFMA R16, -R10, R12, c[0x2][0x0]; /* 0x9b883040001c2842 */
/*0158*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0x14], PT; /* 0x5b101c40029c001e */
/*0160*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*0168*/ DFMA R16, R16, R16, R16; /* 0xdb804000081c4042 */
/*0170*/ SEL R15, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c3e */
/*0178*/ SSY 0x3a0; /* 0x1480000110000000 */
/* 0x08acb4a4a4a4a480 */
/*0188*/ DMUL R14, R14, R4; /* 0xe4000000021c383a */
/*0190*/ DFMA R12, R16, R12, R12; /* 0xdb803000061c4032 */
/*0198*/ DMUL R16, R14, R12; /* 0xe4000000061c3842 */
/*01a0*/ DFMA R10, -R10, R16, R14; /* 0xdb883800081c282a */
/*01a8*/ DFMA R10, R10, R12, R16; /* 0xdb804000061c282a */
/*01b0*/ DSETP.LEU.AND P0, PT, |R10|, RZ, PT; /* 0xdc581c007f9c2a1e */
/*01b8*/ @!P0 BRA 0x1e0; /* 0x120000001020003c */
/* 0x088010b010b8acb4 */
/*01c8*/ DSETP.EQ.AND P0, PT, R10, RZ, PT; /* 0xdc101c007f9c281e */
/*01d0*/ @!P0 BRA 0x358; /* 0x12000000c020003c */
/*01d8*/ DMUL.S R8, R4, R6; /* 0xe4000000035c1022 */
/*01e0*/ ISETP.GT.U32.AND P0, PT, R0, c[0x2][0x18], PT; /* 0x5b401c40031c001e */
/*01e8*/ MOV32I R0, 0x1ff00000; /* 0x740ff800001fc002 */
/*01f0*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*01f8*/ SEL R15, R0, c[0x2][0x10], !P0; /* 0x65002040021c003e */
/* 0x08b4a49c849c849c */
/*0208*/ DMUL R12, R10, R8; /* 0xe4000000041c2832 */
/*0210*/ DMUL R18, R10, R14; /* 0xe4000000071c284a */
/*0218*/ DMUL R10, R12, R14; /* 0xe4000000071c302a */
/*0220*/ DMUL R16, R8, R18; /* 0xe4000000091c2042 */
/*0228*/ DFMA R8, R10, R6, -R4; /* 0xdb901000031c2822 */
/*0230*/ DFMA R12, R16, R6, -R4; /* 0xdb901000031c4032 */
/*0238*/ DSETP.GT.AND P0, PT, |R8|, |R12|, PT; /* 0xdc209c00061c221e */
/* 0x08b010ac10b010a0 */
/*0248*/ SEL R9, R17, R11, P0; /* 0xe5000000059c4426 */
/*0250*/ FSETP.GTU.AND P1, PT, |R9|, 1.469367938527859385e-39, PT; /* 0xb5e01c00801c263d */
/*0258*/ MOV R11, R9; /* 0xe4c03c00049c002e */
/*0260*/ SEL R8, R16, R10, P0; /* 0xe5000000051c4022 */
/*0268*/ @P1 NOP.S; /* 0x8580000000443c02 */
/*0270*/ FSETP.LT.AND P0, PT, |R5|, 1.5046327690525280102e-36, PT; /* 0xb5881c20001c161d */
/*0278*/ MOV32I R0, 0x3ff00000; /* 0x741ff800001fc002 */
/* 0x0880a48090108c10 */
/*0288*/ MOV R16, RZ; /* 0xe4c03c007f9c0042 */
/*0290*/ SEL R17, R0, c[0x2][0x1c], !P0; /* 0x65002040039c0046 */
/*0298*/ LOP.OR R10, R8, 0x1; /* 0xc2001000009c2029 */
/*02a0*/ LOP.AND R8, R8, -0x2; /* 0xca0003ffff1c2021 */
/*02a8*/ DMUL R4, R16, R4; /* 0xe4000000021c4012 */
/*02b0*/ DMUL R6, R16, R6; /* 0xe4000000031c401a */
/*02b8*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/* 0x08b010b010a0b4a4 */
/*02c8*/ DFMA R12, R8, R6, -R4; /* 0xdb901000031c2032 */
/*02d0*/ DSETP.GT.AND P0, PT, |R12|, |R14|, PT; /* 0xdc209c00071c321e */
/*02d8*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*02e0*/ LOP.AND R0, R8, 0x1; /* 0xc2000000009c2001 */
/*02e8*/ IADD R11.CC, R8, -0x1; /* 0xc88403ffff9c202d */
/*02f0*/ ISETP.EQ.U32.AND P0, PT, R0, 0x1, PT; /* 0xb3201c00009c001d */
/*02f8*/ IADD.X R0, R9, -0x1; /* 0xc88043ffff9c2401 */
/* 0x08b4a480a010b010 */
/*0308*/ SEL R10, R11, R8, !P0; /* 0xe5002000041c2c2a */
/*0310*/ @P0 IADD R8.CC, R8, 0x1; /* 0xc084000000802021 */
/*0318*/ SEL R11, R0, R9, !P0; /* 0xe5002000049c002e */
/*0320*/ @P0 IADD.X R9, R9, RZ; /* 0xe08040007f802426 */
/*0328*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/*0330*/ DFMA R4, R8, R6, -R4; /* 0xdb901000031c2012 */
/*0338*/ DSETP.GT.AND P0, PT, |R4|, |R14|, PT; /* 0xdc209c00071c121e */
/* 0x08b4acb4a010b810 */
/*0348*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*0350*/ SEL.S R9, R11, R9, P0; /* 0xe500000004dc2c26 */
/*0358*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0360*/ MUFU.RCP64H R9, R7; /* 0x84000000031c1c26 */
/*0368*/ DSETP.GT.AND P0, PT, |R8|, RZ, PT; /* 0xdc201c007f9c221e */
/*0370*/ @P0 BRA.U 0x398; /* 0x120000001000023c */
/*0378*/ @!P0 DSETP.NEU.AND P1, PT, |R6|, +INF , PT; /* 0xb4681fff80201a3d */
/* 0x0800b8a010ac0010 */
/*0388*/ @!P0 SEL R9, R7, R9, P1; /* 0xe500040004a01c26 */
/*0390*/ @!P0 SEL R8, R6, RZ, P1; /* 0xe50004007fa01822 */
/*0398*/ DMUL.S R8, R8, R4; /* 0xe4000000025c2022 */
/*03a0*/ MOV R4, R8; /* 0xe4c03c00041c0012 */
/*03a8*/ MOV R5, R9; /* 0xe4c03c00049c0016 */
/*03b0*/ RET; /* 0x19000000001c003c */
/*03b8*/ BRA 0x3b8; /* 0x12007ffffc1c003c */
MUFU.RCP64H
指令提供倒数的初始近似值。它对分母的高32位(y
)进行运算,并提供双精度逼近的高32位,因此算作一个浮点运算(单精度特殊) 由探查器。
还有另一个单精度 FFMA
指令进一步向下显然用作测试不需要全精度的条件的 high-throughput 版本。
问题
在 CUDA C 的一个项目中,我遇到了有关单精度和双精度浮点运算的意外行为。在项目中,我首先在一个内核中用数字填充数组,然后在另一个内核中对这些数字进行一些计算。所有变量和数组都是双精度的,所以我不希望发生任何单精度浮点运算。但是,如果我使用 NVPROF 分析程序的可执行文件,它表明执行了单精度操作。这怎么可能?
最小、完整且可验证的示例
这是最小的程序,它在我的体系结构上显示了这种行为:(断言和错误捕获已被排除在外)。我使用的是 Nvidia Tesla k40 显卡。
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define Nx 10
#define Ny 10
#define RANDOM double(0.236954587566)
__global__ void test(double *array, size_t pitch){
double rho, u;
int x = threadIdx.x + blockDim.x*blockIdx.x;
int y = threadIdx.y + blockDim.y*blockIdx.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx && y < Ny){
rho = array[idx];
u = array[idx+1]/rho;
array[idx] = rho*u;
}
}
__global__ void fill(double *array, size_t pitch){
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx || y < Ny){
array[idx] = RANDOM*idx;
array[idx + 1] = idx*idx*RANDOM;
}
}
int main(int argc, char* argv[]) {
double *d_array;
size_t pitch;
cudaMallocPitch((void **) &d_array, &pitch, 2*Nx*sizeof(double), Ny);
dim3 threadDistribution = dim3(8,8);
dim3 blockDistribution = dim3( (Nx + threadDistribution.x - 1) / (threadDistribution.x), (Ny + threadDistribution.y) / (threadDistribution.y));
fill <<< blockDistribution, threadDistribution >>> (d_array, pitch);
cudaDeviceSynchronize();
test <<< blockDistribution, threadDistribution >>> (d_array, pitch);
return 0;
}
NVPROF 的输出(经过编辑以使其更具可读性,如果您需要完整的输出,请在评论中询问):
....
Device "Tesla K40c (0)"
Kernel: test(double*, unsigned long)
Metric Name Min Max Avg
flop_count_sp 198 198 198
flop_count_sp_add 0 0 0
flop_count_sp_mul 0 0 0
flop_count_sp_fma 99 99 99
flop_count_sp_special 102 102 102
flop_count_dp 1214 1214 1214
flop_count_dp_add 0 0 0
flop_count_dp_mul 204 204 204
flop_count_dp_fma 505 505 505
到目前为止我发现了什么
我发现如果我删除第16行的除法:
u = array[idx+1]/rho;
==>
u = array[idx+1];
输出符合预期:执行了零次单精度运算和恰好 100 次双精度运算。有谁知道为什么除法会导致程序使用单精度触发器和 10 倍以上的双精度浮点运算? 我也尝试过使用内部函数 (__ddiv_rn),但这并没有解决问题。
非常感谢!
编辑 - 工作解决方案
尽管我仍然没有弄清楚为什么它使用单精度,但我已经找到了这个问题的 'solution',感谢@EOF。 用 rho 的倒数代替乘法来完成这项工作:
u = array[idx+1]/rho;
==>
u = array[idx+1]*__drcp_rn(rho);
正如其他人指出的那样,CUDA 设备在硬件中没有浮点除法指令。相反,它们从分母的倒数的初始近似值开始,由单精度特殊功能单元提供。它与分子的乘积然后被迭代细化,直到它与机器精度内的分数相匹配。
即使是 __ddiv_rn()
内在函数也被 ptxas 编译成这个指令序列,所以它的使用没有区别。
您可以通过使用 cuobjdump -sass
自己检查代码来获得更深入的了解,尽管除了 bare list of instructions.
我将使用以下bare-bones除法内核作为示例:
__global__ void div(double x, double y, double *z) {
*z = x / y;
}
针对计算能力为 3.5 的设备编译为以下着色器程序集:
Function : _Z3divddPd
.headerflags @"EF_CUDA_SM35 EF_CUDA_PTX_SM(EF_CUDA_SM35)"
/* 0x08a0109c10801000 */
/*0008*/ MOV R1, c[0x0][0x44]; /* 0x64c03c00089c0006 */
/*0010*/ MOV R0, c[0x0][0x14c]; /* 0x64c03c00299c0002 */
/*0018*/ MOV32I R2, 0x1; /* 0x74000000009fc00a */
/*0020*/ MOV R8, c[0x0][0x148]; /* 0x64c03c00291c0022 */
/*0028*/ MOV R9, c[0x0][0x14c]; /* 0x64c03c00299c0026 */
/*0030*/ MUFU.RCP64H R3, R0; /* 0x84000000031c000e */
/*0038*/ MOV32I R0, 0x35b7333; /* 0x7401adb9999fc002 */
/* 0x08a080a080a4a4a4 */
/*0048*/ DFMA R4, -R8, R2, c[0x2][0x0]; /* 0x9b880840001c2012 */
/*0050*/ DFMA R4, R4, R4, R4; /* 0xdb801000021c1012 */
/*0058*/ DFMA R4, R4, R2, R2; /* 0xdb800800011c1012 */
/*0060*/ DMUL R6, R4, c[0x0][0x140]; /* 0x64000000281c101a */
/*0068*/ FSETP.GE.AND P0, PT, R0, |c[0x0][0x144]|, PT; /* 0x5db09c00289c001e */
/*0070*/ DFMA R8, -R8, R6, c[0x0][0x140]; /* 0x9b881800281c2022 */
/*0078*/ MOV R2, c[0x0][0x150]; /* 0x64c03c002a1c000a */
/* 0x0880acb0a0ac8010 */
/*0088*/ MOV R3, c[0x0][0x154]; /* 0x64c03c002a9c000e */
/*0090*/ DFMA R4, R8, R4, R6; /* 0xdb801800021c2012 */
/*0098*/ @P0 BRA 0xb8; /* 0x120000000c00003c */
/*00a0*/ FFMA R0, RZ, c[0x0][0x14c], R5; /* 0x4c001400299ffc02 */
/*00a8*/ FSETP.GT.AND P0, PT, |R0|, c[0x2][0x8], PT; /* 0x5da01c40011c021e */
/*00b0*/ @P0 BRA 0xe8; /* 0x120000001800003c */
/*00b8*/ MOV R4, c[0x0][0x140]; /* 0x64c03c00281c0012 */
/* 0x08a1b810b8008010 */
/*00c8*/ MOV R5, c[0x0][0x144]; /* 0x64c03c00289c0016 */
/*00d0*/ MOV R7, c[0x0][0x14c]; /* 0x64c03c00299c001e */
/*00d8*/ MOV R6, c[0x0][0x148]; /* 0x64c03c00291c001a */
/*00e0*/ CAL 0xf8; /* 0x1300000008000100 */
/*00e8*/ ST.E.64 [R2], R4; /* 0xe5800000001c0810 */
/*00f0*/ EXIT; /* 0x18000000001c003c */
/*00f8*/ LOP32I.AND R0, R7, 0x40000000; /* 0x20200000001c1c00 */
/* 0x08a08010a010b010 */
/*0108*/ MOV32I R15, 0x1ff00000; /* 0x740ff800001fc03e */
/*0110*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0xc], PT; /* 0x5b101c40019c001e */
/*0118*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0120*/ SEL R9, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c26 */
/*0128*/ MOV32I R12, 0x1; /* 0x74000000009fc032 */
/*0130*/ DMUL R10, R8, R6; /* 0xe4000000031c202a */
/*0138*/ LOP32I.AND R0, R5, 0x7f800000; /* 0x203fc000001c1400 */
/* 0x08a0108ca01080a0 */
/*0148*/ MUFU.RCP64H R13, R11; /* 0x84000000031c2c36 */
/*0150*/ DFMA R16, -R10, R12, c[0x2][0x0]; /* 0x9b883040001c2842 */
/*0158*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0x14], PT; /* 0x5b101c40029c001e */
/*0160*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*0168*/ DFMA R16, R16, R16, R16; /* 0xdb804000081c4042 */
/*0170*/ SEL R15, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c3e */
/*0178*/ SSY 0x3a0; /* 0x1480000110000000 */
/* 0x08acb4a4a4a4a480 */
/*0188*/ DMUL R14, R14, R4; /* 0xe4000000021c383a */
/*0190*/ DFMA R12, R16, R12, R12; /* 0xdb803000061c4032 */
/*0198*/ DMUL R16, R14, R12; /* 0xe4000000061c3842 */
/*01a0*/ DFMA R10, -R10, R16, R14; /* 0xdb883800081c282a */
/*01a8*/ DFMA R10, R10, R12, R16; /* 0xdb804000061c282a */
/*01b0*/ DSETP.LEU.AND P0, PT, |R10|, RZ, PT; /* 0xdc581c007f9c2a1e */
/*01b8*/ @!P0 BRA 0x1e0; /* 0x120000001020003c */
/* 0x088010b010b8acb4 */
/*01c8*/ DSETP.EQ.AND P0, PT, R10, RZ, PT; /* 0xdc101c007f9c281e */
/*01d0*/ @!P0 BRA 0x358; /* 0x12000000c020003c */
/*01d8*/ DMUL.S R8, R4, R6; /* 0xe4000000035c1022 */
/*01e0*/ ISETP.GT.U32.AND P0, PT, R0, c[0x2][0x18], PT; /* 0x5b401c40031c001e */
/*01e8*/ MOV32I R0, 0x1ff00000; /* 0x740ff800001fc002 */
/*01f0*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*01f8*/ SEL R15, R0, c[0x2][0x10], !P0; /* 0x65002040021c003e */
/* 0x08b4a49c849c849c */
/*0208*/ DMUL R12, R10, R8; /* 0xe4000000041c2832 */
/*0210*/ DMUL R18, R10, R14; /* 0xe4000000071c284a */
/*0218*/ DMUL R10, R12, R14; /* 0xe4000000071c302a */
/*0220*/ DMUL R16, R8, R18; /* 0xe4000000091c2042 */
/*0228*/ DFMA R8, R10, R6, -R4; /* 0xdb901000031c2822 */
/*0230*/ DFMA R12, R16, R6, -R4; /* 0xdb901000031c4032 */
/*0238*/ DSETP.GT.AND P0, PT, |R8|, |R12|, PT; /* 0xdc209c00061c221e */
/* 0x08b010ac10b010a0 */
/*0248*/ SEL R9, R17, R11, P0; /* 0xe5000000059c4426 */
/*0250*/ FSETP.GTU.AND P1, PT, |R9|, 1.469367938527859385e-39, PT; /* 0xb5e01c00801c263d */
/*0258*/ MOV R11, R9; /* 0xe4c03c00049c002e */
/*0260*/ SEL R8, R16, R10, P0; /* 0xe5000000051c4022 */
/*0268*/ @P1 NOP.S; /* 0x8580000000443c02 */
/*0270*/ FSETP.LT.AND P0, PT, |R5|, 1.5046327690525280102e-36, PT; /* 0xb5881c20001c161d */
/*0278*/ MOV32I R0, 0x3ff00000; /* 0x741ff800001fc002 */
/* 0x0880a48090108c10 */
/*0288*/ MOV R16, RZ; /* 0xe4c03c007f9c0042 */
/*0290*/ SEL R17, R0, c[0x2][0x1c], !P0; /* 0x65002040039c0046 */
/*0298*/ LOP.OR R10, R8, 0x1; /* 0xc2001000009c2029 */
/*02a0*/ LOP.AND R8, R8, -0x2; /* 0xca0003ffff1c2021 */
/*02a8*/ DMUL R4, R16, R4; /* 0xe4000000021c4012 */
/*02b0*/ DMUL R6, R16, R6; /* 0xe4000000031c401a */
/*02b8*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/* 0x08b010b010a0b4a4 */
/*02c8*/ DFMA R12, R8, R6, -R4; /* 0xdb901000031c2032 */
/*02d0*/ DSETP.GT.AND P0, PT, |R12|, |R14|, PT; /* 0xdc209c00071c321e */
/*02d8*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*02e0*/ LOP.AND R0, R8, 0x1; /* 0xc2000000009c2001 */
/*02e8*/ IADD R11.CC, R8, -0x1; /* 0xc88403ffff9c202d */
/*02f0*/ ISETP.EQ.U32.AND P0, PT, R0, 0x1, PT; /* 0xb3201c00009c001d */
/*02f8*/ IADD.X R0, R9, -0x1; /* 0xc88043ffff9c2401 */
/* 0x08b4a480a010b010 */
/*0308*/ SEL R10, R11, R8, !P0; /* 0xe5002000041c2c2a */
/*0310*/ @P0 IADD R8.CC, R8, 0x1; /* 0xc084000000802021 */
/*0318*/ SEL R11, R0, R9, !P0; /* 0xe5002000049c002e */
/*0320*/ @P0 IADD.X R9, R9, RZ; /* 0xe08040007f802426 */
/*0328*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/*0330*/ DFMA R4, R8, R6, -R4; /* 0xdb901000031c2012 */
/*0338*/ DSETP.GT.AND P0, PT, |R4|, |R14|, PT; /* 0xdc209c00071c121e */
/* 0x08b4acb4a010b810 */
/*0348*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*0350*/ SEL.S R9, R11, R9, P0; /* 0xe500000004dc2c26 */
/*0358*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0360*/ MUFU.RCP64H R9, R7; /* 0x84000000031c1c26 */
/*0368*/ DSETP.GT.AND P0, PT, |R8|, RZ, PT; /* 0xdc201c007f9c221e */
/*0370*/ @P0 BRA.U 0x398; /* 0x120000001000023c */
/*0378*/ @!P0 DSETP.NEU.AND P1, PT, |R6|, +INF , PT; /* 0xb4681fff80201a3d */
/* 0x0800b8a010ac0010 */
/*0388*/ @!P0 SEL R9, R7, R9, P1; /* 0xe500040004a01c26 */
/*0390*/ @!P0 SEL R8, R6, RZ, P1; /* 0xe50004007fa01822 */
/*0398*/ DMUL.S R8, R8, R4; /* 0xe4000000025c2022 */
/*03a0*/ MOV R4, R8; /* 0xe4c03c00041c0012 */
/*03a8*/ MOV R5, R9; /* 0xe4c03c00049c0016 */
/*03b0*/ RET; /* 0x19000000001c003c */
/*03b8*/ BRA 0x3b8; /* 0x12007ffffc1c003c */
MUFU.RCP64H
指令提供倒数的初始近似值。它对分母的高32位(y
)进行运算,并提供双精度逼近的高32位,因此算作一个浮点运算(单精度特殊) 由探查器。
还有另一个单精度 FFMA
指令进一步向下显然用作测试不需要全精度的条件的 high-throughput 版本。