Apache Spark 中的 Jaro-Winkler 分数计算

Jaro-Winkler score calculation in Apache Spark

我们需要在 Apache Spark Dataset 中跨字符串实现 Jaro-Winkler 距离计算。我们是 spark 的新手,在网上搜索后我们找不到太多东西。如果您能指导我们,那就太好了。我们想到了使用 flatMap 然后意识到它无济于事,然后我们尝试使用几个 foreach 循环但无法确定如何前进。由于每个字符串都必须与所有字符串进行比较。就像下面的数据集一样。

RowFactory.create(0, "Hi I heard about Spark"),
RowFactory.create(1,"I wish Java could use case classes"),
RowFactory.create(2,"Logistic,regression,models,are,neat"));

在上述数据框中找到的所有字符串的 jaro winkler 得分示例。

Distance score between label, 0,1 -> 0.56
Distance score between label, 0,2 -> 0.77
Distance score between label, 0,3 -> 0.45
Distance score between label, 1,2 -> 0.77
Distance score between label, 2,3 -> 0.79

    import java.util.Arrays;
    import java.util.Iterator;
    import java.util.List;

    import org.apache.spark.SparkConf;
    import org.apache.spark.api.java.JavaSparkContext;
    import org.apache.spark.api.java.function.FlatMapFunction;
    import org.apache.spark.sql.Dataset;
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.RowFactory;
    import org.apache.spark.sql.SQLContext;
    import org.apache.spark.sql.SparkSession;
    import org.apache.spark.sql.types.DataTypes;
    import org.apache.spark.sql.types.Metadata;
    import org.apache.spark.sql.types.StructField;
    import org.apache.spark.sql.types.StructType;

    import info.debatty.java.stringsimilarity.JaroWinkler;

    public class JaroTestExample {
     public static void main( String[] args )
        {
      System.setProperty("hadoop.home.dir", "C:\winutil");
      JavaSparkContext sc = new JavaSparkContext(new SparkConf().setAppName("SparkJdbcDs").setMaster("local[*]"));
      SQLContext sqlContext = new SQLContext(sc);
      SparkSession spark = SparkSession.builder()
        .appName("JavaTokenizerExample").getOrCreate();
       JaroWinkler jw = new JaroWinkler();

            // substitution of s and t
            System.out.println(jw.similarity("My string", "My tsring"));

            // substitution of s and n
            System.out.println(jw.similarity("My string", "My ntrisg"));

            List<Row> data = Arrays.asList(
        RowFactory.create(0, "Hi I heard about Spark"),
        RowFactory.create(1,"I wish Java could use case classes"),
        RowFactory.create(2,"Logistic,regression,models,are,neat"));

            StructType schema = new StructType(new StructField[] {
      new StructField("label", DataTypes.IntegerType, false,
        Metadata.empty()),
      new StructField("sentence", DataTypes.StringType, false,
        Metadata.empty()) });

            Dataset<Row> sentenceDataFrame = spark.createDataFrame(data, schema);

            sentenceDataFrame.foreach();

        }

    }

可以使用以下代码在 spark 中进行交叉连接 Dataset2Object=Dataset1Object.crossJoin(Dataset2Object) 在 Dataset2Object 中,您可以获得所需的记录对的所有组合。在这种情况下,平面图不会有帮助。 请记得使用版本spark-sql_2.11 版本2.1.0

Scala

您可以按如下方式使用 spark-stringmetric 库:

import com.github.mrpowers.spark.stringmetric.SimilarityFunctions

df.withColumn(
  "w1_w2_jaro_winkler",
  SimilarityFunctions.jaro_winkler(col("word1"), col("word2"))
)

PySpark

您可以按如下方式使用 ceja 库:

import ceja

df.withColumn("jaro_winkler_similarity", ceja.jaro_winkler_similarity(col("word1"), col("word2")))