我如何在 MATLAB 中制作动画 GIF?
How do i produce an animated GIF in MATLAB?
我想制作一个偏微分方程解的 gif 动画。那就是gif应该在特定时间显示解决方案。
目前我只能制作绘制所有时间的图片。
下面是我的整个程序,其中 figure(3)
是我制作 gif 的尝试。
clear all;
close all;
%%%%%%%%%%%%
% For slide 27 of Diffusion 1D
% The equation to be graphed in latex form is
% u(x,t)=\frac{1}{L}+\frac{2}{L}\sum^{\infty}_{n=1}cos(\frac{n\pi x_0}{L})cos(\frac{n\pi x}{L})e^{-k(\frac{n\pi}{L})^2t}
%%%%%%%%%%%%
%define constants
%note that the constants listed in the file are arbitrary
L = 2; %length of the rod
k= 0.01; % Diffusivity, which is assume to be constant but can be a function of x
x0 = 1; %location of the inital condition i.e. f(x)=delta(x-x0)
tmax= 50; %maximum amount of time the simulation runs
nmax = 200; % maximum value for n, increase to accuracy
tgrid = 21; %The number of points to be evaluated in the time domain
xgrid = 51; %The number of points to be evaluated in the space domain
%initialize variables
u=zeros(tgrid,xgrid); %preallocate array used for storing values of the solution
t=linspace(0,tmax,tgrid);%We assume that time is evenly distributed
x=linspace(0,L,xgrid); %We assume that space is evenly distributed
%Plotting variables
figure(1);
hold on;
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
%Calculation,
for i=1:tgrid
for j=1:xgrid
seriesSum=0;
%Calculate the fourier series up to nmax for each point u(x,t)
for n= 1:nmax
seriesSum= seriesSum + cos(n*pi*x0/L)*cos(n*pi*x(j)/L)*exp(-k*t(i)*(n*pi/L)^2);
end
%Finish calcuation for solution at a specific point
u(i,j)= 1/L+(2/L)*seriesSum;
end
%After we have calculated all points at time t, we graph it for time t
plot(x,u(i,:),'linewidth',4);
end
saveas(gcf,'PDE_sol.png')%Save figure as png in current directory
%run a second loop that does not include the initial condition to get a
%better view of the long term behaviour.
%Plotting variables
figure(2);
hold on;
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
for i=2:tgrid
plot(x,u(i,:),'linewidth',4);
end
saveas(gcf,'PDE_sol_without_inital.png')%Save figure as png in current directory
%Create a gif verison of figure 2
figure(3);
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
filename = 'PDE_sol.gif';
for i=2:tgrid
plot(x,u(i,:),'linewidth',4);
drawnow
frame = getframe(1);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 2;
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
end
我得到的输出 gif 是
这显然不是动画。
注意: 如果您认为 post 这个问题有更好的地方,请告诉我。由于我的问题是 MATLAB 编程语言,而不是涉及的数学,我认为这是 post 我的问题的最佳地点。
getframe
的第一个输入是您要截屏的 figure
的句柄。正如您所写的那样,您正在抓取图 1 ,它实际上指的是您创建的第一个没有在循环中更新的图。
您已将 3 的数字句柄分配给您在最后一个循环之前创建的图形,因此您需要告诉 getframe
使用 那个数字代替。
此外,我会创建一个绘图对象并更新 XData
和 YData
,而不是不断创建新的绘图对象。连续调用 plot
的问题是它很慢 AND 它会完全重置所有 axes
设置,例如 x 和 y 标签以及 x 和 y 限制.
% Store the handle to the figure in hfig
hfig = figure(3);
% Create the initial plot object
hplot = plot(NaN, NaN, 'LineWidth', 4);
axis([0 L 0 2]);
xlabel('x');
ylabel('u(x,t)');
filename = 'PDE_sol.gif';
for i=2:tgrid
% Update the plot appearance
set(hplot, 'XData', x, 'YData', u(i,:));
drawnow
% Get a screenshot of THIS figure
frame = getframe(hfig);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 2;
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
end
我想制作一个偏微分方程解的 gif 动画。那就是gif应该在特定时间显示解决方案。
目前我只能制作绘制所有时间的图片。
下面是我的整个程序,其中 figure(3)
是我制作 gif 的尝试。
clear all;
close all;
%%%%%%%%%%%%
% For slide 27 of Diffusion 1D
% The equation to be graphed in latex form is
% u(x,t)=\frac{1}{L}+\frac{2}{L}\sum^{\infty}_{n=1}cos(\frac{n\pi x_0}{L})cos(\frac{n\pi x}{L})e^{-k(\frac{n\pi}{L})^2t}
%%%%%%%%%%%%
%define constants
%note that the constants listed in the file are arbitrary
L = 2; %length of the rod
k= 0.01; % Diffusivity, which is assume to be constant but can be a function of x
x0 = 1; %location of the inital condition i.e. f(x)=delta(x-x0)
tmax= 50; %maximum amount of time the simulation runs
nmax = 200; % maximum value for n, increase to accuracy
tgrid = 21; %The number of points to be evaluated in the time domain
xgrid = 51; %The number of points to be evaluated in the space domain
%initialize variables
u=zeros(tgrid,xgrid); %preallocate array used for storing values of the solution
t=linspace(0,tmax,tgrid);%We assume that time is evenly distributed
x=linspace(0,L,xgrid); %We assume that space is evenly distributed
%Plotting variables
figure(1);
hold on;
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
%Calculation,
for i=1:tgrid
for j=1:xgrid
seriesSum=0;
%Calculate the fourier series up to nmax for each point u(x,t)
for n= 1:nmax
seriesSum= seriesSum + cos(n*pi*x0/L)*cos(n*pi*x(j)/L)*exp(-k*t(i)*(n*pi/L)^2);
end
%Finish calcuation for solution at a specific point
u(i,j)= 1/L+(2/L)*seriesSum;
end
%After we have calculated all points at time t, we graph it for time t
plot(x,u(i,:),'linewidth',4);
end
saveas(gcf,'PDE_sol.png')%Save figure as png in current directory
%run a second loop that does not include the initial condition to get a
%better view of the long term behaviour.
%Plotting variables
figure(2);
hold on;
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
for i=2:tgrid
plot(x,u(i,:),'linewidth',4);
end
saveas(gcf,'PDE_sol_without_inital.png')%Save figure as png in current directory
%Create a gif verison of figure 2
figure(3);
axis([0 L -inf inf]);
xlabel('x');
ylabel('u(x,t)');
filename = 'PDE_sol.gif';
for i=2:tgrid
plot(x,u(i,:),'linewidth',4);
drawnow
frame = getframe(1);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 2;
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
end
我得到的输出 gif 是
这显然不是动画。
注意: 如果您认为 post 这个问题有更好的地方,请告诉我。由于我的问题是 MATLAB 编程语言,而不是涉及的数学,我认为这是 post 我的问题的最佳地点。
getframe
的第一个输入是您要截屏的 figure
的句柄。正如您所写的那样,您正在抓取图 1 ,它实际上指的是您创建的第一个没有在循环中更新的图。
您已将 3 的数字句柄分配给您在最后一个循环之前创建的图形,因此您需要告诉 getframe
使用 那个数字代替。
此外,我会创建一个绘图对象并更新 XData
和 YData
,而不是不断创建新的绘图对象。连续调用 plot
的问题是它很慢 AND 它会完全重置所有 axes
设置,例如 x 和 y 标签以及 x 和 y 限制.
% Store the handle to the figure in hfig
hfig = figure(3);
% Create the initial plot object
hplot = plot(NaN, NaN, 'LineWidth', 4);
axis([0 L 0 2]);
xlabel('x');
ylabel('u(x,t)');
filename = 'PDE_sol.gif';
for i=2:tgrid
% Update the plot appearance
set(hplot, 'XData', x, 'YData', u(i,:));
drawnow
% Get a screenshot of THIS figure
frame = getframe(hfig);
im = frame2im(frame);
[imind,cm] = rgb2ind(im,256);
if i == 2;
imwrite(imind,cm,filename,'gif', 'Loopcount',inf);
else
imwrite(imind,cm,filename,'gif','WriteMode','append');
end
end