在 Cython 中使用智能指针进行动态分配的数组

Using Smart Pointers in Cython for Dynamically Allocated Arrays

我正在为带有签名

的函数调用编写一个Python包装器

double** foo(double** arrayIn, int dim1, int dim2);

并且需要在我的 Python 包装器中构建 arrayInhere. However, since Cython includes support for smart pointers, I would prefer to implement that solution. One way to do this would be a combination of malloc and a unique_ptr with a custom deleter. Another (simpler) solution would be to use the allocator class from libcpp.

给出了一种可能的解决方案
import numpy as np
cimport numpy as np
from libcpp.memory cimport unique_ptr, allocator

def testArray(int dim1, int dim2):
    cdef allocator[double *] ptr_al
    cdef unique_ptr[double *] myptr
    cdef np.ndarray arr
    cdef double[:,:] carr

    myptr.reset(ptr_al.allocate(dim1))
    arr = np.ndarray((dim1,dim2),dtype=np.float64,order='C')
    carr = arr

    myptr.get()[0] = &carr[0,0]
    myptr.get()[1] = &carr[1,0]
    myptr.get()[2] = &carr[2,0]

这段代码可以正确编译和执行(使用 Cython 24.1、Python 3.5、VS2015)。我担心的是是否一切都会被正确释放/垃圾收集。我的理解是Python负责ndarrayunique_ptr应该负责allocator创建的double *[]。这是正确的,还是代码会造成内存泄漏?有没有一种方法可以验证所有内容都已正确解除分配?

Is this correct, or will the code create a memory leak?

我认为这不应该泄漏。

Is there a way I could verify that everything has been properly deallocated?

您可以循环调用 testArray 并查看进程内存是线性增长还是保持不变。由于您知道 dim1dim2,如果某些内容未正确释放,您可以估计内存泄漏大小。

在更复杂的情况下,还有其他方法可以测试内存泄漏:C 库的调试版本会告诉您是否已释放所有已分配的内存。此外,还有 valgrindclangleaksanitizer 等工具,但在您的情况下,我会使用循环。