Spark:计算向量列中的 NaN

Spark: Counting NaNs in a vector column

假设我有一个如下所示的 Spark DataFrame

+-----------+------------------+
| id        |          features|
+-----------+------------------+
|          1|[57.0,1.0,0.0,0.0]|
|          2|[63.0,NaN,0.0,0.0]|
|          3|[74.0,1.0,3.0,NaN]|
|          4|[67.0,NaN,0.0,0.0]|
|          5|[NaN,1.0,NaN,NaN] |

其中 features 列中的每一行都是一个 DenseVector 包含 float 和 NaN 数据类型的组合。有没有办法计算 DenseVector 或任意列的第一列中 NaN 的数量?例如,我想要一些东西 return 第一列有 1 NaN,第二列有 3,第四列有 2。

据我所知,Spark SQL 不提供这样的方法,但它对 RDD 和一点 NumPy 来说很简单。

from pyspark.ml.linalg import DenseVector, Vector
import numpy as np

df = sc.parallelize([
    (1, DenseVector([57.0, 1.0, 0.0, 0.0])),
    (2, DenseVector([63.0, float("NaN"), 0.0, 0.0])),
    (3, DenseVector([74.0, 1.0, 3.0, float("NaN")])),
    (4, DenseVector([67.0, float("NaN"), 0.0, 0.0])),
    (5, DenseVector([float("NaN"), 1.0, float("NaN"), float("NaN")])),
]).toDF(["id", "features"])

(df
    .select("features")
    .rdd
    .map(lambda x: np.isnan(x.features.array))
    .sum())
array([1, 2, 1, 2])

您可以使用 SQL 做类似的事情,但它需要更多的努力。辅助函数:

from pyspark.sql.functions import udf
from pyspark.sql.types import ArrayType, DoubleType
from pyspark.sql import Column
from typing import List

def as_array(c: Column) -> Column:
    def as_array_(v: Vector) -> List[float]:
        return v.array.tolist()
    return udf(as_array_, ArrayType(DoubleType()))(c)

确定向量的大小:

from pyspark.sql.functions import col, size

(vlen, ) = df.na.drop().select(size(as_array(col("features")))).first()

创建表达式:

from pyspark.sql.functions import col, isnan, sum as sum_

feature_array = as_array("features").alias("features")

终于select:

(df
    .na.drop(subset=["features"])
    .select([sum_(isnan(feature_array[i]).cast("bigint")) for i in range(vlen)]))