Num day to Name day Pandas
Num day to Name day with Pandas
如果我使用这个函数 pd.DatetimeIndex(dfTrain['datetime']).weekday
我得到了星期几,但是我没有找到任何给出日期名称的函数...所以我需要将 0 转换为星期一,1到星期二等等。
这是我的数据框示例:
datetime season holiday workingday weather temp atemp humidity windspeed count
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0000 16
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0000 40
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635 80 0.0000 32
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395 75 0.0000 13
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395 75 0.0000 1
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880 75 6.0032 1
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635 80 0.0000 2
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880 86 0.0000 3
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395 75 0.0000 8
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425 76 0.0000 14
还有一个问题,pandas.DatetimeIndex.dayofweek
和pandas.DatetimeIndex.weekday
的区别是什么?
一种方法,只要 datetime 已经是 datetime 列,就是应用 datetime.strftime
来获取工作日的字符串:
In [105]:
df['weekday'] = df[['datetime']].apply(lambda x: dt.datetime.strftime(x['datetime'], '%A'), axis=1)
df
Out[105]:
datetime season holiday workingday weather temp atemp \
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425
humidity windspeed count weekday
0 81 0.0000 16 Saturday
1 80 0.0000 40 Saturday
2 80 0.0000 32 Saturday
3 75 0.0000 13 Saturday
4 75 0.0000 1 Saturday
5 75 6.0032 1 Saturday
6 80 0.0000 2 Saturday
7 86 0.0000 3 Saturday
8 75 0.0000 8 Saturday
9 76 0.0000 14 Saturday
关于你的另一个问题,dayofweek
和weekday
没有区别。
将工作日映射定义为等效字符串并在工作日调用映射会更快:
dayOfWeek={0:'Monday', 1:'Tuesday', 2:'Wednesday', 3:'Thursday', 4:'Friday', 5:'Saturday', 6:'Sunday'}
df['weekday'] = df['datetime'].dt.dayofweek.map(dayOfWeek)
对于 0.15.0
之前的版本,以下应该有效:
import datetime as dt
df['weekday'] = df['datetime'].apply(lambda x: dt.datetime.strftime(x, '%A'))
版本 0.18.1 及更高版本
现在有一种新的便捷方法 dt.weekday_name
可以执行上述操作
版本 0.23.0 及更新版本
weekday_name 现在被描述为 dt.day_name
。
您可以使用的最新版本dt.day_name
:
df['weekday'] = df['datetime'].dt.day_name
print df
datetime season holiday workingday weather temp atemp \
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425
humidity windspeed count weekday
0 81 0.0000 16 Saturday
1 80 0.0000 40 Saturday
2 80 0.0000 32 Saturday
3 75 0.0000 13 Saturday
4 75 0.0000 1 Saturday
5 75 6.0032 1 Saturday
6 80 0.0000 2 Saturday
7 86 0.0000 3 Saturday
8 75 0.0000 8 Saturday
9 76 0.0000 14 Saturday
使用 dt.weekday_name
是 deprecated since pandas 0.23.0
, instead, use dt.day_name()
:
df.datetime.dt.day_name()
0 Saturday
1 Saturday
2 Saturday
3 Saturday
4 Saturday
5 Saturday
6 Saturday
7 Saturday
8 Saturday
9 Saturday
Name: datetime, dtype: object
添加到@jezrael 之前的正确回答,你可以使用这个:
import calendar
df['weekday'] = pd.Series(pd.Categorical(df['datetime'].dt.weekday_name, categories=list(calendar.day_name)))
它还根据 [=11] 为您的新分类变量提供 order(在此示例中:'Monday',...,'Sunday') =].这可能对您的后续分析步骤有所帮助。
如果我使用这个函数 pd.DatetimeIndex(dfTrain['datetime']).weekday
我得到了星期几,但是我没有找到任何给出日期名称的函数...所以我需要将 0 转换为星期一,1到星期二等等。
这是我的数据框示例:
datetime season holiday workingday weather temp atemp humidity windspeed count
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395 81 0.0000 16
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635 80 0.0000 40
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635 80 0.0000 32
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395 75 0.0000 13
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395 75 0.0000 1
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880 75 6.0032 1
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635 80 0.0000 2
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880 86 0.0000 3
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395 75 0.0000 8
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425 76 0.0000 14
还有一个问题,pandas.DatetimeIndex.dayofweek
和pandas.DatetimeIndex.weekday
的区别是什么?
一种方法,只要 datetime 已经是 datetime 列,就是应用 datetime.strftime
来获取工作日的字符串:
In [105]:
df['weekday'] = df[['datetime']].apply(lambda x: dt.datetime.strftime(x['datetime'], '%A'), axis=1)
df
Out[105]:
datetime season holiday workingday weather temp atemp \
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425
humidity windspeed count weekday
0 81 0.0000 16 Saturday
1 80 0.0000 40 Saturday
2 80 0.0000 32 Saturday
3 75 0.0000 13 Saturday
4 75 0.0000 1 Saturday
5 75 6.0032 1 Saturday
6 80 0.0000 2 Saturday
7 86 0.0000 3 Saturday
8 75 0.0000 8 Saturday
9 76 0.0000 14 Saturday
关于你的另一个问题,dayofweek
和weekday
没有区别。
将工作日映射定义为等效字符串并在工作日调用映射会更快:
dayOfWeek={0:'Monday', 1:'Tuesday', 2:'Wednesday', 3:'Thursday', 4:'Friday', 5:'Saturday', 6:'Sunday'}
df['weekday'] = df['datetime'].dt.dayofweek.map(dayOfWeek)
对于 0.15.0
之前的版本,以下应该有效:
import datetime as dt
df['weekday'] = df['datetime'].apply(lambda x: dt.datetime.strftime(x, '%A'))
版本 0.18.1 及更高版本
现在有一种新的便捷方法 dt.weekday_name
可以执行上述操作
版本 0.23.0 及更新版本
weekday_name 现在被描述为 dt.day_name
。
您可以使用的最新版本dt.day_name
:
df['weekday'] = df['datetime'].dt.day_name
print df
datetime season holiday workingday weather temp atemp \
0 2011-01-01 00:00:00 1 0 0 1 9.84 14.395
1 2011-01-01 01:00:00 1 0 0 1 9.02 13.635
2 2011-01-01 02:00:00 1 0 0 1 9.02 13.635
3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395
4 2011-01-01 04:00:00 1 0 0 1 9.84 14.395
5 2011-01-01 05:00:00 1 0 0 2 9.84 12.880
6 2011-01-01 06:00:00 1 0 0 1 9.02 13.635
7 2011-01-01 07:00:00 1 0 0 1 8.20 12.880
8 2011-01-01 08:00:00 1 0 0 1 9.84 14.395
9 2011-01-01 09:00:00 1 0 0 1 13.12 17.425
humidity windspeed count weekday
0 81 0.0000 16 Saturday
1 80 0.0000 40 Saturday
2 80 0.0000 32 Saturday
3 75 0.0000 13 Saturday
4 75 0.0000 1 Saturday
5 75 6.0032 1 Saturday
6 80 0.0000 2 Saturday
7 86 0.0000 3 Saturday
8 75 0.0000 8 Saturday
9 76 0.0000 14 Saturday
使用 dt.weekday_name
是 deprecated since pandas 0.23.0
, instead, use dt.day_name()
:
df.datetime.dt.day_name()
0 Saturday
1 Saturday
2 Saturday
3 Saturday
4 Saturday
5 Saturday
6 Saturday
7 Saturday
8 Saturday
9 Saturday
Name: datetime, dtype: object
添加到@jezrael 之前的正确回答,你可以使用这个:
import calendar
df['weekday'] = pd.Series(pd.Categorical(df['datetime'].dt.weekday_name, categories=list(calendar.day_name)))
它还根据 [=11] 为您的新分类变量提供 order(在此示例中:'Monday',...,'Sunday') =].这可能对您的后续分析步骤有所帮助。