难以理解 Agda 的 Coinduction

Trouble to understand Agda's Coinduction

我正在尝试使用并行抢占式调度为 IMP 语言编写功能语义,如下文第 4 节所述paper

我正在使用 Agda 2.5.2 和标准库 0.13。此外,完整代码可在以下 gist.

首先,我将所讨论语言的语法定义为归纳类型。

  data Exp (n : ℕ) : Set where
    $_  : ℕ → Exp n
    Var : Fin n → Exp n
    _⊕_ : Exp n → Exp n → Exp n

  data Stmt (n : ℕ) : Set where
    skip : Stmt n
    _≔_ : Fin n → Exp n → Stmt n
    _▷_ : Stmt n → Stmt n → Stmt n
    iif_then_else_ : Exp n → Stmt n → Stmt n → Stmt n
    while_do_ : Exp n → Stmt n → Stmt n
    _∥_ : Stmt n → Stmt n → Stmt n
    atomic : Stmt n → Stmt n
    await_do_ : Exp n → Stmt n → Stmt n

状态只是一个自然数向量,表达式语义很简单。

  σ_ : ℕ → Set
  σ n = Vec ℕ n

  ⟦_,_⟧ : ∀ {n} → Exp n → σ n → ℕ
  ⟦ $ n , s ⟧ = n
  ⟦ Var v , s ⟧ = lookup v s
  ⟦ e ⊕ e' , s ⟧ = ⟦ e , s ⟧ + ⟦ e' , s ⟧

然后,我定义了恢复的类型,这是某种延迟计算。

  data Res (n : ℕ) : Set where
    ret : (st : σ n) → Res n
    δ   : (r : ∞ (Res n)) → Res n
    _∨_ : (l r : ∞ (Res n)) → Res n
    yield : (s : Stmt n)(st : σ n) → Res n

接下来,在1之后,我定义语句的顺序执行和并行执行

  evalSeq : ∀ {n} → Stmt n → Res n → Res n
  evalSeq s (ret st) = yield s st
  evalSeq s (δ r) = δ (♯ (evalSeq s (♭ r)))
  evalSeq s (l ∨ r) = ♯ evalSeq s (♭ l) ∨  ♯ evalSeq s (♭ r)
  evalSeq s (yield s' st) = yield (s ▷ s') st

  evalParL : ∀ {n} → Stmt n → Res n → Res n
  evalParL s (ret st) = yield s st
  evalParL s (δ r) = δ (♯ evalParL s (♭ r))
  evalParL s (l ∨ r) = ♯ evalParL s (♭ l) ∨ ♯ evalParL s (♭ r)
  evalParL s (yield s' st) = yield (s ∥ s') st

  evalParR : ∀ {n} → Stmt n → Res n → Res n
  evalParR s (ret st) = yield s st
  evalParR s (δ r) = δ (♯ evalParR s (♭ r))
  evalParR s (l ∨ r) = ♯ evalParR s (♭ l) ∨ ♯ evalParR s (♭ r)
  evalParR s (yield s' st) = yield (s' ∥ s) st

到目前为止,还不错。接下来,我需要在恢复中定义语句评估函数和关闭操作(执行暂停的计算)。

  mutual
    close : ∀ {n} → Res n → Res n
    close (ret st) = ret st
    close (δ r) = δ (♯ close (♭ r))
    close (l ∨ r) = ♯ close (♭ l) ∨ ♯ close (♭ r)
    close (yield s st) = δ (♯ eval s st)

    eval : ∀ {n} → Stmt n → σ n → Res n
    eval skip st = ret st
    eval (x ≔ e) st = δ (♯ (ret (st [ x ]≔ ⟦ e , st ⟧ )))
    eval (s ▷ s') st = evalSeq s (eval s' st)
    eval (iif e then s else s') st with ⟦ e , st ⟧
    ...| zero = δ (♯ yield s' st)
    ...| suc n = δ (♯ yield s st)
    eval (while e do s) st with ⟦ e , st ⟧
    ...| zero = δ (♯ ret st)
    ...| suc n = δ (♯ yield (s ▷ while e do s) st )
    eval (s ∥ s') st = (♯ evalParR s' (eval s st)) ∨ (♯ evalParL s (eval s' st))
    eval (atomic s) st = {!!} -- δ (♯ close (eval s st))
    eval (await e do s) st = {!!}

当我尝试用 δ (♯ close (eval s st)) 填充 eval 构造函数的 eval 等式中的漏洞时,Agda 的完整性检查器抱怨说 eval 中的几个点的终止检查失败] 和 close 函数。

我对这个问题的疑问是:

1) 为什么 Agda 终止检查会抱怨这些定义?在我看来,调用 δ (♯ close (eval s st)) 很好,因为它已完成 在结构较小的语句上。

2) Current Agda's language documentation 表示这种基于乐谱的共归纳是 Agda 中的 "old-way" 共归纳。它建议使用 共归记录和共模。我环顾四周,但无法找到流和延迟 monad 之外的共模示例。我的问题:是否可以使用共归纳记录和共模来表示恢复?

让 Agda 相信这会终止的方法是使用大小类型。这样你就可以证明 close x 至少和 x.

一样明确

首先,这里是 Res 的定义,基于归纳记录和大小类型:

mutual
  record Res (n : ℕ) {sz : Size} : Set where
    coinductive
    field resume : ∀ {sz' : Size< sz} → ResCase n {sz'}
  data ResCase (n : ℕ) {sz : Size} : Set where
    ret : (st : σ n) → ResCase n
    δ   : (r : Res n {sz}) → ResCase n
    _∨_ : (l r : Res n {sz}) → ResCase n
    yield : (s : Stmt n) (st : σ n) → ResCase n
open Res

那么你可以证明evalSeq和朋友保持大小:

evalStmt : ∀ {n sz} → (Stmt n → Stmt n → Stmt n) → Stmt n → Res n {sz} → Res n {sz}
resume (evalStmt _⊗_ s res) with resume res
resume (evalStmt _⊗_ s _) | ret st = yield s st
resume (evalStmt _⊗_ s _) | δ x = δ (evalStmt _⊗_ s x)
resume (evalStmt _⊗_ s _) | l ∨ r = evalStmt _⊗_ s l ∨ evalStmt _⊗_ s r
resume (evalStmt _⊗_ s _) | yield s' st = yield (s ⊗ s') st

evalSeq : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalSeq = evalStmt (\s s' → s ▷ s')

evalParL : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalParL = evalStmt (\s s' → s ∥ s')

evalParR : ∀ {n sz} → Stmt n → Res n {sz} → Res n {sz}
evalParR = evalStmt (\s s' → s' ∥ s)

close 也类似:

mutual
  close : ∀ {n sz} → Res n {sz} → Res n {sz}
  resume (close res) with resume res
  ... | ret st = ret st
  ... | δ r = δ (close r)
  ... | l ∨ r = close l ∨ close r
  ... | yield s st = δ (eval s st)

并且 eval 定义明确,最大为任意大小:

  eval : ∀ {n sz} → Stmt n → σ n → Res n {sz}
  resume (eval skip st) = ret st
  resume (eval (x ≔ e) st) = ret (st [ x ]≔ ⟦ e , st ⟧ )
  resume (eval (s ▷ s') st) = resume (evalSeq s (eval s' st))
  resume (eval (iif e then s else s') st) with ⟦ e , st ⟧
  ...| zero = yield s' st
  ...| suc n = yield s st
  resume (eval (while e do s) st) with ⟦ e , st ⟧
  ...| zero = ret st
  ...| suc n = yield (s ▷ while e do s) st
  resume (eval (s ∥ s') st) = evalParR s' (eval s st) ∨ evalParL s (eval s' st)
  resume (eval (atomic s) st) = resume (close (eval s st)) -- or δ
  resume (eval (await e do s) st) = {!!}