如何找到带有多个标签的物品?

How to find items with multiple tags on them?

问题:

我有一个名为 item_tag_assn 的 table,它映射带有标签的项目(多对多关联 table)。我需要找出应用了一组标签的项目。例如,如果我的 table 有以下数据:

 item_id | tag_id 
------------------
     205 | 110
     206 | 120
     207 | 130
     205 | 130
     206 | 147
     210 | 110
     205 | 152
     209 | 111
     210 | 177
     205 | 147
     212 | 110
     212 | 135
     205 | 135
     212 | 147
------------------

如果我正在搜索


环境:


目前进度:

我找到了这样的解决方案:

SELECT DISTINCT ita1.item_id 
FROM 
  item_tag_assn AS ita1 
  LEFT JOIN 
    item_tag_assn AS ita2 ON ita1.item_id = ita2.item_id 
  LEFT JOIN 
    item_tag_assn AS ita3 ON ita2.item_id = ita3.item_id 
GROUP BY ita1.item_id 
HAVING 
  sum((ita1.tag_id = 110 and ita2.tag_id = 135 and ita3.tag_id = 147)::integer) >= 1

并且有效


需要优化

协会table相当大。将它与自身结合起来既昂贵又慢,而且它的可扩展性也不是很好。我认为 window 函数可以提供帮助,但我不知道如何使用它们。

有没有更好的方法解决这个问题?

如果我没理解错你需要这样的东西:

WITH search AS (
    SELECT '{110,130,135,147,152}'::int4[] as search
), searched AS (
    SELECT DISTINCT item_id,
           tag_id
      FROM item_tag_assn
      JOIN search ON (tag_id) = ANY(search)
  ORDER BY 1, 2
), aggregated AS (
    SELECT item_id,
           array_agg(tag_id) AS agg
      FROM searched
  GROUP BY 1
)
SELECT *
  FROM aggregated, search
 WHERE agg = search
;

search - 设置搜索数组(数组必须预排序)。 searched - 搜索标签以外的所有行 aggregated - 根据 item_id

在数组 tag_id 中聚合

您可以将 agg = search 更改为 agg @> search,之后您就不需要在 searched.

中进行预排序和 ORDER BY

当添加问题的数据集时:

WITH item_tag_assn AS (
      SELECT   205 as item_id, 110 as tag_id
      UNION SELECT     206 , 120
      UNION SELECT     207 , 130
      UNION SELECT     205 , 130
      UNION SELECT     206 , 147
      UNION SELECT     210 , 110
      UNION SELECT     205 , 152
      UNION SELECT     209 , 111
      UNION SELECT     210 , 177
      UNION SELECT     205 , 147
      UNION SELECT     212 , 110
      UNION SELECT     212 , 135
      UNION SELECT     205 , 135
      UNION SELECT     212 , 147
),search AS (
    SELECT '{110,130,135,147,152}'::int4[] as search
), searched AS (
    SELECT DISTINCT item_id,
           tag_id
      FROM item_tag_assn
      JOIN search ON (tag_id) = ANY(search)
  ORDER BY 1, 2
), aggregated AS (
    SELECT item_id,
           array_agg(tag_id) AS agg
      FROM searched
  GROUP BY 1
)
SELECT *
  FROM aggregated, search
 WHERE agg = search
;

结果:

 item_id |          agg          |        search         
---------+-----------------------+-----------------------
     205 | {110,130,135,147,152} | {110,130,135,147,152}
(1 row)

如果将搜索更改为 '{110,135,147}'

 item_id |      agg      |    search     
---------+---------------+---------------
     212 | {110,135,147} | {110,135,147}
     205 | {110,135,147} | {110,135,147}
(2 rows)

对于 运行 产品,您需要创建索引 CREATE INDEX ON item_tag_assn (tag_id);

                                                               QUERY PLAN                                                               
----------------------------------------------------------------------------------------------------------------------------------------
 Hash Join  (cost=32.72..35.34 rows=1 width=68) (actual time=0.055..0.059 rows=3 loops=1)
   Hash Cond: (aggregated.agg = search.search)
   CTE search
     ->  Result  (cost=0.00..0.01 rows=1 width=32) (actual time=0.001..0.001 rows=1 loops=1)
   CTE searched
     ->  Unique  (cost=27.73..28.55 rows=110 width=8) (actual time=0.029..0.031 rows=3 loops=1)
           ->  Sort  (cost=27.73..28.00 rows=110 width=8) (actual time=0.029..0.029 rows=3 loops=1)
                 Sort Key: x.item_id, x.tag_id
                 Sort Method: quicksort  Memory: 25kB
                 ->  Nested Loop  (cost=10.40..24.00 rows=110 width=8) (actual time=0.013..0.014 rows=3 loops=1)
                       ->  CTE Scan on search search_1  (cost=0.00..0.02 rows=1 width=32) (actual time=0.002..0.002 rows=1 loops=1)
                       ->  Bitmap Heap Scan on x  (cost=10.40..22.88 rows=110 width=8) (actual time=0.009..0.009 rows=3 loops=1)
                             Recheck Cond: (tag_id = ANY (search_1.search))
                             Heap Blocks: exact=1
                             ->  Bitmap Index Scan on i1  (cost=0.00..10.38 rows=110 width=0) (actual time=0.002..0.002 rows=3 loops=1)
                                   Index Cond: (tag_id = ANY (search_1.search))
   CTE aggregated
     ->  HashAggregate  (cost=2.75..4.12 rows=110 width=36) (actual time=0.038..0.039 rows=3 loops=1)
           Group Key: searched.item_id
           ->  CTE Scan on searched  (cost=0.00..2.20 rows=110 width=8) (actual time=0.029..0.031 rows=3 loops=1)
   ->  CTE Scan on aggregated  (cost=0.00..2.20 rows=110 width=36) (actual time=0.040..0.043 rows=3 loops=1)
   ->  Hash  (cost=0.02..0.02 rows=1 width=32) (actual time=0.005..0.005 rows=1 loops=1)
         Buckets: 1024  Batches: 1  Memory Usage: 9kB
         ->  CTE Scan on search  (cost=0.00..0.02 rows=1 width=32) (actual time=0.000..0.001 rows=1 loops=1)
 Planning time: 0.309 ms
 Execution time: 0.115 ms