计算 NumPy 数组中连续的 1

Counting consecutive 1's in NumPy array

[1, 1, 1, 0, 0, 0, 1, 1, 0, 0]

我有一个由 0 和 1 组成的 NumPy 数组,如上所示。我怎样才能像下面这样添加所有连续的 1?任何时候遇到 0,我都会重置。

[1, 2, 3, 0, 0, 0, 1, 2, 0, 0]

我可以使用 for 循环执行此操作,但是是否有使用 NumPy 的矢量化解决方案?

如果列表理解是可以接受的

np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])

这是一个向量化的方法 -

def island_cumsum_vectorized(a):
    a_ext = np.concatenate(( [0], a, [0] ))
    idx = np.flatnonzero(a_ext[1:] != a_ext[:-1])
    a_ext[1:][idx[1::2]] = idx[::2] - idx[1::2]
    return a_ext.cumsum()[1:-1]

样本运行-

In [91]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [92]: island_cumsum_vectorized(a)
Out[92]: array([1, 2, 3, 0, 0, 0, 1, 2, 0, 0])

In [93]: a = np.array([0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1])

In [94]: island_cumsum_vectorized(a)
Out[94]: array([0, 1, 2, 3, 4, 0, 0, 0, 1, 2, 0, 0, 1])

运行时测试

对于计时,我会使用 OP 的示例输入数组和 repeat/tile 它,希望这应该是 -

小案例:

In [16]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [17]: a = np.tile(a,10)  # Repeat OP's data 10 times

# @Paul Panzer's solution
In [18]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
10000 loops, best of 3: 73.4 µs per loop

In [19]: %timeit island_cumsum_vectorized(a)
100000 loops, best of 3: 8.65 µs per loop

更大的案例:

In [20]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [21]: a = np.tile(a,1000)  # Repeat OP's data 1000 times

# @Paul Panzer's solution
In [22]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
100 loops, best of 3: 6.52 ms per loop

In [23]: %timeit island_cumsum_vectorized(a)
10000 loops, best of 3: 49.7 µs per loop

不,我想要非常大的箱子:

In [24]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [25]: a = np.tile(a,100000)  # Repeat OP's data 100000 times

# @Paul Panzer's solution
In [26]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
1 loops, best of 3: 725 ms per loop

In [27]: %timeit island_cumsum_vectorized(a)
100 loops, best of 3: 7.28 ms per loop