Circe:高效解码多级 ADT

Circe: decode multi-level ADT efficiently

我想用 Circe 解码以下 ADT:

sealed trait PaymentType
object PaymentType extends EnumEncoder[PaymentType] {
  case object DebitCard extends PaymentType
  case object Check     extends PaymentType
  case object Cash      extends PaymentType
  case object Mobile    extends PaymentType
}
sealed trait CreditCard extends PaymentType
object CreditCard extends EnumEncoder[CreditCard] {
  case object UNKNOWN_CREDIT_CARD extends CreditCard
  case object NOT_ACCEPTED        extends CreditCard
  case object VISA                extends CreditCard
  case object MASTER_CARD         extends CreditCard
  case object DINERS_CLUB         extends CreditCard
  case object AMERICAN_EXPRESS    extends CreditCard
  case object DISCOVER_CARD       extends CreditCard
}

如您所见,有一个父类型 PaymentType,它有一些直接继承者和另一个密封特征家族 CreditCard。现在解码是这样完成的:

object CreditCard {
  implicit val decoder: Decoder[CreditCard] = Decoder.instance[CreditCard] {
  _.as[String].map {
    case "NOT_ACCEPTED"     => NOT_ACCEPTED
    case "VISA"             => VISA
    case "MASTER_CARD"      => MASTER_CARD
    case "DINERS_CLUB"      => DINERS_CLUB
    case "AMERICAN_EXPRESS" => AMERICAN_EXPRESS
    case "DISCOVER_CARD"    => DISCOVER_CARD
    case _                  => UNKNOWN_CREDIT_CARD
  }
}

object PaymentType {
  implicit val decoder: Decoder[PaymentType] = Decoder.instance[PaymentType] {
    _.as[String].flatMap {
      case "DebitCard" => Right(DebitCard)
      case "Check"     => Right(Check)
      case "Cash"      => Right(Cash)
      case "Mobile"    => Right(Mobile)
      case _           => Left(DecodingFailure("", List()))
    }
  }.or(CreditCard.decoder.widen)
}

我不喜欢的是 PaymentType 解码器,尤其是在遇到基于信用卡的完全正常的情况下,我需要创建一个额外且不必要的 DecodingFailure 实例支付方式。我们已经将 CPU 的 99.9% 花在了 JSON 处理上,但它看起来不太对劲。要么是糟糕的 ADT 设计,要么 Circe 中应该有一种方法可以更好地处理这个问题。有什么想法吗?

您可以将 CreditCard 解码器的后备移动到 PaymentType 解码器案例中,这样您就可以避免失败:

implicit val decoder: Decoder[PaymentType] = Decoder.instance[PaymentType] { c =>
  c.as[String].flatMap {
    case "DebitCard" => Right(DebitCard)
    case "Check"     => Right(Check)
    case "Cash"      => Right(Cash)
    case "Mobile"    => Right(Mobile)
    case _           => CreditCard.decoder(c)
  }
}

不过,在这种情况下,我可能会将字符串解析分解为单独的方法:

sealed trait PaymentType
object PaymentType extends EnumEncoder[PaymentType] {
  case object DebitCard extends PaymentType
  case object Check     extends PaymentType
  case object Cash      extends PaymentType
  case object Mobile    extends PaymentType

  private val nameMapping = List(DebitCard, Check, Cash, Mobile).map(pt =>
    pt.productPrefix -> pt
  ).toMap

  def fromString(input: String): Option[PaymentType] = nameMapping.get(input)
}

sealed trait CreditCard extends PaymentType
object CreditCard extends EnumEncoder[CreditCard] {
  case object UNKNOWN_CREDIT_CARD extends CreditCard
  case object NOT_ACCEPTED        extends CreditCard
  case object VISA                extends CreditCard
  case object MASTER_CARD         extends CreditCard
  case object DINERS_CLUB         extends CreditCard
  case object AMERICAN_EXPRESS    extends CreditCard
  case object DISCOVER_CARD       extends CreditCard

  private val nameMapping = List(
    NOT_ACCEPTED,
    VISA,
    MASTER_CARD,
    DINERS_CLUB,
    AMERICAN_EXPRESS,
    DISCOVER_CARD
  ).map(pt => pt.productPrefix -> pt).toMap

  def fromString(input: String): CreditCard =
    nameMapping.getOrElse(input, UNKNOWN_CREDIT_CARD)
}

然后你可以根据 fromString 方法编写解码器,这对我来说是一种更好的解决问题的方法(我不确定哪种方法将涉及更少的分配)。不过,这可能主要是个人喜好问题。